Nlp-progress 2016/04

From cslt Wiki
Jump to: navigation, search

编辑“Nlp-progress-2016-04” 粗体文字斜体文字内部链接外部链接(加前缀 http://)2级标题插入文件文件链接插入非格式文本带时间戳的签名水平线(请小心使用)

Similar questions senetence vector model training with RNN/LSTM and the attention RNN/LSTM chatting model training (Tianyi Luo)

  • Speed up process of the test performance about theano version of Generationg the similar questions' vectors based on RNN.

  • Finish helping Teacher Wang to prepare for text group's presentation(Tang poetry and Songci generation and Intelligent QA system) for Tsinghua University's 105 anniversary.
  • Submit our IJCAI paper to arxiv. (Solve a big problem about submitting the paper including Chinese chacracters. Solution)
  • Optimize theano version of Generationg the similar questions' vectors based on RNN.

  • Finish submiting the camera version paper of IJCAI 2016.
  • Update the version of Technical Report about Chinese Song Iambics generation.

  • Optimize theano version of Generationg the similar questions' vectors based on RNN.

  • Optimize theano version of Generationg the similar questions' vectors based on RNN.
  • Finish implementing theano version of LSTM Max margin vector training.

Reproduce DSSM Baseline (Chao Xing)

2016-04-28 : Given a talk to text team for some recently paper.
              Knowledge Base Completion via Search-Based Question Answering : pdf
              Open Domain Question Answering via Semantic Enrichment  : pdf
              A Neural Conversational Model : pdf
              And given a tiny results for CNN-DSSM in huilan's weekly report.
2016-04-27 : Code Multi-layer CNN, suffered from memory error in GPU in tensorflow.
              So I run such test on CPU, should slow.
2016-04-26 : Code done tricky & analysis such tricky.
2016-04-25 : Find a tricky to improve accuracy given by Tianyi.
            : Code for this tricky.
2016-04-23 : Set a series of experiment set.
              1. Try deep CNN-DSSM, current model just follow proposed model contain one convolution layer, need to be a tuneable parameter.
              2. Test whether mixture data effective to current model and deep CDSSM.
              3. Code Recurrent CNN-DSSM (new approach.)
2016-04-22 : Find a problem : Use labs' gpu machine 970 iteration per time is 1537 second but huilan's server is just 7 second.
              Achieve reasonable results when apply max-margin method to CNN-DSSM model.
2016-04-21 : True DSSM model doesn't work well, analysis as below:
               1. Not exactly reproduce DSSM model, because the original one is English version, I just adapt it to Chinese but after word segmentation. 
                  So the input is tri-gram words not tri-gram letter.
               2. Our dataset far from rich, because of we do not use pre-trained word vectors as initial vectors, we can hardly achieve good performance.
            : Request
               1. As we have rich pre-trained word vectors, maybe CDSSM or RDSSM corrected to our task.
               2. Different length of sequences seek to be fixed dimension vectors, just CNN and RNN can do such things, DNN can not do it by using 
                 fix length of word vectors
            : Coding done CDSSM. Test for it's performance.
               One problem : When you install tensorflow by pip 0.8.0 and you want to use conv2d function by gpu, you need make sure you had already 
                            install your cudnn's version as 4.0 not lastest 5.0.
2016-04-20 : Find reproduced DSSM model's bug, fix it.
2016-04-19 : Code mixture data model by less memory dependency done. Test it's performance.
2016-04-18 : Code mixture data model.
2016-04-16 : Code mixture data model, but face to memory error. Dr. Wang help me fix it.
2016-04-15 : Share Papers. Investigation a series of DSSM papers for future work. And show our intern students how to do research.
            : Original DSSM model : Learning Deep Structured Semantic Models for Web Search using Clickthrough Data pdf
            : CNN based DSSM model : A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval pdf
            : Use DSSM model for a new area : Modeling Interestingness with Deep Neural Networks pdf
2016-04-14 : Test dssm-dnn model, code dssm-cnn model.
              Continue investigate deep neural question answering system.
2016-04-13 : test dssm model, investigate deep neural question answering system.
            : Share theano ppt theano
            : Share tensorflow ppt tensorflow
2016-04-12 : Write done dssm tensor flow version.
2016-04-11 : Write tensorflow toolkit ppt for intern student.
2016-04-10 : Learn tensorflow toolkit.
2016-04-09 : Learn tensorflow toolkit.
2016-04-08 : Finish theano version.

Deep Poem Processing With Image (Ziwei Bai)

2016-04-20 :combine my program with Qixin Wang's
2016-04-10 : web spider to catch a thousand pices of images.
2016-04-13 :1、download theano for python2.7。 2.debug
2016-04-15 :web spider to catch 30 thousands pices of images and store them into a matrix
2016-04-16 :modify the code of CNN and spider
2016-04-17 :train convouloutional neural network

RNN Piano Processing (Jiyuan Zhang)

2016-4-12:select appropriate midis and run rnnrbm model
2016-4-13:view rnnrbm model‘s code
2016-4-14~15:coding to select 4/4 beat of midis
2016-4-17~22:run data, failed several times ,then modify code and view rnnrbm model's code
2016-4-25~29:replace rnnrbm with lstmrbm, then run lstmrbm's model

Question & Answering (Aiting Liu)

2016-04-24 : make my biweekly report
2016-04-23 : read Fader's paper (2011)
2016-04-20 : read Fader's paper (2013)
2016-04-15 : learn dssm and sent2vec
2016-04-16 : try to figure out how the PARALAX dataset is constructed
2016-04-17 : download the PARALAX dataset and try to turn it into what we want it to be


标记为小编辑  监视本页

请注意您对cslt Wiki的所有贡献 都可能被其他贡献者编辑,修改或删除。 如果您不希望您的文字被任意修改和再散布,请不要提交。 您同时也要向我们保证您所提交的内容是您自己所作,或得自一个不受版权保护或相似自由的来源(参阅Cslt:著作权的细节)。 不要在未获授权的情况下发表! 保存页面 显示预览 显示更改 取消 | 编辑帮助 (在新窗口中打开) 导航菜单 中文(中国大陆)‎Fengyang讨论设置监视列表贡献退出页面讨论阅读编辑查看历史监视

搜索 前往 首页 最近更改 随机页面 帮助 工具 链入页面 相关更改 上传文件 特殊页面 页面信息 隐私权政策关于cslt Wiki免责声明Powered by MediaWiki