
Continuous Space Language Model(NNLM)

Liu Rong

Intern students of CSLT

2013-12-30

• N-gram

• Introduction

• data sparsity and smooth

• NNLM

• Introduction

• Multi NNLMs

• Toolkit

• Word2vec(Deep learing in NLP)

• Introduction

• some methods on train word2vec

• Toolkit

• References

Outline

• N-Gram

• A language model is usually formulated as a probability distribution p(s) over strings s that attempts to

reflect how frequently a string s occurs as a sentence

p s = p w1, w2, ⋯ ,w𝑘 = p(w1)p(w2|w1)⋯p(w𝑘|w1, w2, ⋯ , w𝑘−1)

• n-gram

• example(3-gram)

eg: “This is a example”

p(This is a example) ≈p(This|<s>)p(is|This <s>)p(a| <s> This is)

p(example|This is a)p(</s>| is a example)

=> to calculate the p(example|This is a)

N-Gram: p(example|This is a) =
𝐶(𝑇ℎ𝑖𝑠 𝑖𝑠 𝑎 𝑒𝑥𝑎𝑚𝑝𝑙𝑒)

𝐶(𝑇ℎ𝑖𝑠 𝑖𝑠 𝑎)

N-gram-Introduction

• Data sparsity

Example:

the data: John read moby dick(白鲸记). Mary read a different book. She read a book by Cher.(15 words+18 phrase)

N-gram-data sparsity

4

p(John read a book)=p(John|<s>)p(read|John)p(a | read)p(book|a)p(</s>|book)

=1/3 * 1/1 * 2/3 * 1/2 * 1/2

=0.06

P(Cher read a book)=p(Cher|<s>)p(read|a)p(a|read)p(book|a)p(</s>|book)

=0/3 0/1 2/3 1/2 ½

=0

\data\ \2-grams:

ngram 1= 13 1/1 John read

ngram 2= 16 1/3 read moby

1/1 moby dick

\1-grams: 1/1 Mary read

2/15 a 2/3 read a

2/15 book 1/2 a different

1/15 by 1/1 different book

1/15 dick 1/1 she read

1/15 differernt 1/2 a book

1/15 John 1/2 book by

1/15 Mary 1/1 by cher

1/15 moby 1/1 cher </s>

3/15 read 1/3 <s> John

1/15 cher 1/1 dick </s>

1/15 she 1/3 <s> Mary

3/15 <s> 1/2 book </s>

3/15 </s>

• Data sparsity

• Smoothing methods

N-gram-smoothing methods

5

\data\ \2-grams:

ngram 1= 13 1/1 John read

ngram 2= 16 1/3 read moby

1/1 moby dick

\1-grams: 1/1 Mary read

2/15 a 0.1 2/3 read a

2/15 book 0.2 1/2 a different

1/15 by 0.1 1/1 different book

1/15 dick 0.01 1/1 she read

1/15 differernt 0.1 1/2 a book

1/15 John 0.1 1/2 book by

1/15 Mary 0.1 1/1 by cher

1/15 moby 0.1 1/1 cher </s>

3/15 read 0.1 1/3 <s> John

1/15 cher 0.1 1/1 dick </s>

1/15 she 0.1 1/3 <s> Mary

3/15 <s> 0.1 1/2 book </s>

3/15 </s> 0.1

P(Cher read a book)=p(Cher|<s>)p(read|a)p(a|read)p(book|a)p(</s>|book)

=p(Cher)*0.1 p(read)*0.1* p(a|read) *p(book|a)*p(</s>|book)

=0.00002

• Data sparsity

• Smoothing methods

• Additive smoothing

• Good-Turing estimate

• Jelinek-Mercer smoothing (interpolation)

• Katz smoothing (backoff)

• Witten-Bell smoothing

• Absolute discounting

• Kneser-Ney smoothing

6

N-gram-smoothing methods

NNLM-Introduction

7

A Neural Probabilistic Language Model(Bengio et al, NIPS’2000 and JMLR 2003)

• Motivation:

– LM does not take into account contexts farther than 2 words.

– LM does not take into account the “similarity” between words.

• Idea:

– A word 𝑤 is associated with a distributed feature vector (a real-

valued vector inℝ𝑛 𝑛 is much smaller than size of the vocabulary)

– Express joint probability function 𝑓 of words sequence in terms of

feature vectors

– Learn simultaneously the word feature vector and the parameters of

𝑓

NNLM-Intoduction

[1] Y. Bengio, and R. Ducharme. A neural probabilistic language model. In Neural Information Processing Systems, volume 13, pages 932-938. 2001.

• Target:

• Projection:

word2vector: word[0.1,0.2,…..,0.3]𝐶𝑘
=>feature vector for each word

Neural architecture

P(w𝑗|wj−n+1,…,wj−2,wj−1)=

𝑓 𝑖, 𝑤𝑡−1, … , 𝑤𝑡−𝑛+1 = 𝑔(𝑖, 𝐶 𝑤𝑡−1 , … , 𝐶(𝑤𝑡−𝑛+1))

NNLM-Introduction

9

• softmax output layer:

𝑃 𝑤𝑡 𝑤𝑡−1, ⋯ , 𝑤𝑡−𝑛+1 =
𝑒𝑦𝑤𝑡

 𝑖 𝑒
𝑦𝑖

• 𝑦𝑖 unnormalized log-probabilities for each output word 𝑖

𝑦 = 𝑏 + 𝑈tanh(𝑑 + 𝐻𝑥)
• 𝑥 is the word features layer activation vector

𝑥 = 𝐶 𝑤𝑡−1 , … , 𝐶 𝑤𝑡−𝑛+1
• The free parameters of the model are:

𝜃 = (𝑏, 𝑑,𝑊,𝑈, 𝐻, 𝐶)
– 𝑏 output biases (|𝑉|)

– 𝑑 the hidden layer biases (ℎ)

– 𝑈 the hidden-to-output weights (𝑉 × ℎ)

– 𝐻 the hidden layer weights (ℎ × (𝑛 − 1)𝑚)

– 𝐶 word features (𝑉 ×𝑚)

• Steps forward:

ℎ𝑗= 𝑙𝑚𝑗𝑙 𝑐𝑙 + 𝑏𝑗

d𝑗 = tanh(ℎ𝑗)

O𝑖 = 𝑗 𝑣𝑖𝑗𝑑𝑗 + 𝑘𝑖

p𝑖 = 𝑒
𝑂𝑖/ 𝑟=1

𝑁 𝑒𝑂𝑟

NNLM-Forward Phase

• Steps BP

𝐸 = 𝑖=1
𝑁 𝑡𝑖𝑙𝑛𝑝𝑖 + 𝛽(𝑗𝑙𝑚𝑗𝑙

2 + 𝑖𝑗 𝑣𝑖𝑗
2)

where 𝑡𝑖=1 if the next word is i or 𝑡𝑖=0

note:

the first part: cross-entropy

the second part: is regularization term to prevent the

neural network from overfitting the training data

𝜕E
𝜕𝑂𝑖

=
𝜕E
𝜕𝑝𝑖

𝜕𝑝𝑖

𝜕𝑂𝑖
= (1 − p𝑖)

𝜕E
𝜕𝑘𝑖
=
𝜕E
𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑘𝑖
=
𝜕E
𝜕𝑜𝑖

=> 𝑘𝑖=𝑘𝑖 + ε
𝜕E
𝜕𝑘𝑖

𝜕E
𝜕𝑣𝑖𝑗
=
𝜕E
𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑣𝑖𝑗
=
𝜕E
𝜕𝑜𝑖
𝑑𝑗 => 𝑣𝑖𝑗=𝑣𝑖𝑗+ ε

𝜕E
𝜕𝑣𝑖𝑗

𝜕E
𝜕𝑑𝑗

=
𝜕E
𝜕𝑜

𝜕o
𝜕𝑑𝑗
= 𝑖

𝜕E
𝜕𝑂𝑖
𝑣𝑖𝑗

𝜕E
𝜕ℎ𝑗

=
𝜕E
𝜕𝑑𝑗

𝜕𝑑𝑗

𝜕ℎ𝑗
=
𝜕E
𝜕𝑑𝑗
(1 − tanh(ℎ𝑗)

2)

𝜕E
𝜕𝑏𝑗
=
𝜕E
𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑏𝑗
=
𝜕E
𝜕ℎ𝑗

=> 𝑏𝑗=𝑏𝑗 + ε
𝜕E
𝜕𝑏𝑗

𝜕E
𝜕𝑚𝑗𝑙
=
𝜕E
𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑚𝑗𝑙
=
𝜕E
𝜕ℎ𝑗
𝑐𝑙 => 𝑚𝑗𝑙=𝑚𝑗𝑙+ ε

𝜕E
𝜕𝑚𝑗𝑙

NNLM-Backward/Update Phase

NNLM--Multi NNLMs

• 𝑃 w𝑗 = i h𝑗 =

𝑝1 w𝑗 = i h𝑗 0 < 𝑖 < 𝑁1

𝑝2 w𝑗 = i h𝑗 𝑁1 < 𝑖 < 𝑁2
⋮

𝑝𝑚 w𝑗 = i h𝑗 𝑁𝑚−1 < 𝑖 < 𝑁𝑚

NNLM--Merge NNLMs

The steps:

F = (P1 o
𝑇 , P2 o

𝑇 , ⋯ , P𝑚 o
𝑇)𝑇

H = F ×M+ b

O = H × V + o

p𝑖 = 𝑒
𝑂𝑖/ 𝑟=1

𝑁 𝑒𝑂𝑟

where: P𝑚 o
𝑇 is the output of single NNLM

corpus

N1

N2

Nm-1

Nm

trian

Multi Neural network

Train again

Merge Neural network

N1

N2

Nm-1

Nm

H O

application

NNLM--Merge NNLMs

model map 2044notep3 record1900 general online1 online2 speedup average

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47 29.94875

Ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51 30.09875

NNLM(0-10240)

P256-h192 34.11 27.6 18.94 13.85 44.6 39.58 32.13 31.7

P256-h384 33.63 27.57 20.02 13.53 44.3 39.31 32.03 31.08

P256-h576 33.81 27.18 19.27 13.59 44.32 39.3 32.03 31.17

P384-h384 33.55 27.09 19.86 13.46 44.28 39.45 32.06 31.32

P256-h384-

h256 34.21 27.52 18.73 13.69 44.72 39.88 32.34 31.04

15

NNLM-results

model map 2044notep3 record1900 general online1 online2 speedup

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47

Ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51

NNLM(0-10240)

P256-h192 34.01 27.11 18.19 12.75 43.4 39.17 31.91 30.9

P256-h384 33.9 27.05 18.35 12.71 43.3 39.2 31.86 31.04

P256-h576 33.86 27 18.62 12.79 43.29 39.17 31.96 30.66

P384-h384 34.14 27.08 18.35 12.68 43.29 39.2 31.85 30.83

P256-h384-

h256 34.14 27.08 18.29 12.83 43.47 39.28 31.86 31.17

16

NNLM-results

Note: weight0.1:new*0.1+0.9old

NNLM(multi)--Results

Note: weight0.1:new*0.1+0.9old

model map 2044 notep3

record19

00 general online1 online2 speedup

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47

ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51

mach1 34.35 27.8 20.45 13.27 44.22 39.78 32.28 32.03

mach2 34.41 27.94 19.91 13.4 44.49 39.76 32.32 31.91

mach3 34.32 27.99 19.86 13.43 44.68 39.76 32.39 31.78

mach4 34.19 28.11 19.05 13.4 44.63 39.75 32.4 31.65

mach5 34.16 28.04 18.94 13.43 44.72 39.73 32.41 31.63

mach6 34.1 28.09 18.94 13.45 44.79 39.76 32.41 31.57

mach7 34.11 28.06 18.83 13.45 44.91 39.74 32.43 31.67

mach8 34.11 28.06 18.83 13.45 44.81 39.79 32.46 31.67

mach9 34.14 28.02 18.94 13.42 44.87 39.8 32.47 31.87

mach10 34.24 28.04 19.05 13.46 44.88 39.81 32.49 31.89

weight0.1 34.16 27.14 18.46 12.77 43.46 39.22 31.91 30.94

18

NNLM(merge)-results

model map 2044 notep3 record1900 general online1 online2 speedup

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47

Ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51

Mach10(no merge) 34.24 28.04 19.05 13.46 44.88 39.81 32.49 31.89

Mach10(merge)

h100 35.42 28.4 19.64 14.11 45.53 40.25 32.89 32.9

h200 35.92 28.46 19.75 14.25 45.51 40.42 32.85 32.71

• CSLM Toolkit http://www-lium.univ-lemans.fr/cslm/
Holger Schwenk; CSLM - A modular Open-Source Continuous Space Language Modeling Toolkit, in Interspeech, August 2013.

NNLM--toolkit

19

http://www-lium.univ-lemans.fr/cslm/

• Introduction

• C&W

• M&H

• RNNLM

• Huang

Word Representation

20

• One-hot Representation

dog => [0 0 0 0 1 0 0 0 0 0 0]

cat => [1 0 0 0 0 0 0 0 0 0 0]

• Distributed Representation

dog => [0.792 -0.177 0.98 -0.9 …..]

cat => [0.76 0.12 -0.54 0.9 0.65 ….]

Word2vec--Introduction

22

Word2vec--Introduction

• Language Modeling

• Speech Recognition

• Machine Translation

• Part-Of-Speech Tagging

• Chunking

• Named Entity Recognition

• Semantic Role Labeling

• Sentiment Analysis

• Paraphrasing

• Question-Answering

• Word-Sense Disambiguation

• A neural network for learning word vectors (Collobert et al. JMLR 2011)

Natural Language Processing (almost) from Scratch Journal of Machine Learning Research 1 (2000) 1-48

It focus on how to use word vectors on Natural Language Processing

• Main idea
• A word and its context is a positive training sample; a random word in that same context gives a negative training sample:

– [+] positive = Score(Cat chills [on] a mat) ---𝑓 𝑥

– [-] negative = Score(Cat chills [god] a mat)----- 𝑓(𝑥𝑤)

• What to feed in the NN

– each word is an n-dimensional vector, a look up table:

𝐿 ∈ ℝ𝑛× 𝑉

– Training objective:

𝜃 → 𝑀𝑎𝑥 0, 1 − 𝑆𝑝𝑜𝑠 + 𝑆𝑛𝑒𝑔 =

𝑥𝜖𝑋

𝑤𝜖𝐷

max{0,1 − 𝑓 𝑥 + 𝑓(𝑥𝑤)}

Where X is data set(n-windows),D is the dictionary,w is middle word of n-windows

• 3-layer NN:

𝑠 = 𝑈𝑇𝑓𝜃 𝑊𝑥 + 𝑏 ⇒ 𝑓(𝑤𝑡 , 𝑤𝑡−1, … , 𝑤𝑡−𝑛+1)

Where 𝑓𝜃 ⋅ is a NN function. S is a score for the n-window sentence, x is vector of (𝑤𝑡 , 𝑤𝑡−1, … , 𝑤𝑡−𝑛+1)

• SENNA: http://ml.nec-labs.com/senna/

Word2vec—c&w

23

Positive data set

The negative data set

Window size n = 11

|V| = 1300000

7 weeks

http://ml.nec-labs.com/senna/

Three new graphical models for statistical language modelling Mnih A, Hinton G.

Word2vec—M&H

24

• Log-Bilinear model

ℎ =

𝑖=1

𝑡−1

𝐻𝑖𝐶(𝑤𝑖)

𝑦𝑗 = 𝐶 𝑤𝑗
𝑇
ℎ

Where 𝐶(𝑤𝑖) is a word-vector of 𝑤𝑖, 𝐻𝑖 is m*m matrix.

• Hierarchical Log-Bilinear Model

Inner product to represent cos distance

To speed up the calculation

Linguistic Regularities in Continuous Space Word Representations (Mikolov, et al. 2013)

Word2vec—RNNLM

25

• Recurrent Neural Network Model

0 1 0 … . 0 𝑣

Context at time t-1

d(t) 0 0 1 … . 0 𝑣

Error= y(t)-d(t)

Linguistic Regularities in Continuous Space Word Representations (Mikolov, et al. 2013)

Word2vec--RNNLM

26

• Recurrent Neural Network Model

– The input vector 𝑤(𝑡) represents input word at time 𝑡 encoded using One hit

coding.

– The output layer 𝑦(𝑡) produces a probability distribution over words.

– The hidden layer 𝑠(𝑡) maintains a representation of the sentence history.

– 𝑤(𝑡) and 𝑦 𝑡 are of same dimension as vocabulary

• Model:
𝑠 𝑡 = 𝑓 𝑈𝑤 𝑡 +𝑊𝑠 𝑡 − 1

𝑦 𝑡 = 𝑔(𝑉𝑠(𝑡))

Where 𝑓 is the sigmod function and 𝑔 is the softmax funciton

Word2vec--RNNLM

27

• Training:

– Stochastic Gradient Descent (SGD)

Objective(Error) function:

𝑒𝑟𝑟𝑜𝑟 𝑡 = 𝑑 𝑡 − 𝑦(𝑡)

where d(t) is the desired vector, i.e w(t)

– Go through all the training data iteratively, and update the weight matrices U, V and W online (after processing

every word)

– Training is performed in several epochs (usually 5-10)

• Where is the word representation?

– 𝑈, with each column

28

Word2vec--RNNLM

Experiments on Broadcast News NIST-RT04

Improving Word Representations via Global Context and Multiple Word Prototypes (Huang, et al. ACL 2013)

Word2vec--Huang

29

Word2vec--Huang

30

• Improve Collobert & Weston’s model

– Training objective:

𝜃 → 𝑀𝑎𝑥{0, 1 − 𝑆𝑝𝑜𝑠 + 𝑆𝑛𝑒𝑔}

↓

𝜃 → 𝑀𝑎𝑥{0, 1 − 𝑆𝑝𝑜𝑠,𝑑 + 𝑆𝑛𝑒𝑔,𝑑}

where 𝑑 is the document (weighted sum of words in 𝑑)

• Measuring Linguistic Regularity

– Syntactic/Semetic Test

Word2vec—Interesing finding

These representations are surprisingly good at capturing syntactic

and semantic regularities in language, and that each relationship is

characterized by a relation-specific vector offset.

Exploiting Similarities among Languages for Machine Translation (Mikolov, et al. 2013 http://arxiv.org/pdf/1309.4168.pdf)

C(king)-C(queen)≈C(man)-C(woman)

C(king)-C(man)+C(woman) ≈ C(queen)

http://arxiv.org/pdf/1309.4168.pdf

Figure 1: Distributed word vector representations of numbers and animals in English (left) and

Spanish (right). The five vectors in each language were projected down to two dimensions

using PCA, and then manually rotated to accentuate their similarity. It can be seen that these

concepts have similar geometric arrangements in both spaces, suggesting that it is possible to

learn an accurate linear mapping from one space to another.

• Useful tools

1. google https://code.google.com/p/word2vec/

train word vector

2. SENNA http://ml.nec-labs.com/senna/
Part of Speech (POS)

Chunking (CHK)

Name Entity Recognition (NER)

Semantic Role Labeling (SRL)

Syntactic Parsing (PSG)

3. Word Representations for NLP http://metaoptimize.com/projects/wordreprs/

Neural language model (Collobert + Weston)

HLBL language model

Brown clusters

CRF Chunking with word representations

Perceptron NER with word representations

Random indexing word representations

4 . Huang http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes

5. RNNLM Toolkit http://www.fit.vutbr.cz/~imikolov/rnnlm/

Word2vec--summary

33

https://code.google.com/p/word2vec/
http://ml.nec-labs.com/senna/
http://metaoptimize.com/projects/wordreprs/
http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes
http://www.fit.vutbr.cz/~imikolov/rnnlm/

• [1] Holger Schwenk; CSLM - A modular Open-Source Continuous Space Language Modeling Toolkit, in

Interspeech, August 2013.

• [2] Y. Bengio, and R. Ducharme. A neural probabilistic language model. In Neural Information

Processing Systems, volume 13, pages 932-938. 2001

• [3] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word

Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.

• [4]Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed

Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.

• [5]Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word

Representations. In Proceedings of NAACL HLT, 2013.

• [6] ngram smoothing http://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf

• Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space

word representations. Proceedings of NAACL-HLT. 2013.

References

34

http://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf

• [7] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel

Kuksa.Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research

(JMLR), 12:2493-2537, 2011.

• [8] Andriy Mnih & Geoffrey Hinton. Three new graphical models for statistical language modelling.

International Conference on Machine Learning (ICML). 2007.

• [9] Andriy Mnih & Geoffrey Hinton. A scalable hierarchical distributed language model. The

Conference on Neural Information Processing Systems (NIPS) (pp. 1081–1088). 2008.

• [10] Mikolov Tomáš. Statistical Language Models based on Neural Networks. PhD thesis, Brno

University of Technology. 2012.

• [11] Turian, Joseph, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general

method for semi-supervised learning. Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics (ACL). 2010.

35

• Thanks

• Q & A

36

