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• N-Gram

• A language model is usually formulated as a probability distribution p(s) over strings s that attempts to 

reflect how frequently a string s occurs as a sentence

p s = p w1, w2, ⋯ ,w𝑘 = p(w1)p(w2|w1)⋯p(w𝑘|w1, w2, ⋯ , w𝑘−1)

• n-gram

• example(3-gram)

eg: “This is a example”

p(This is a example) ≈p(This|<s>)p(is|This <s>)p(a| <s> This is)

p(example|This is a)p(</s>| is a example)

=> to calculate the p(example|This is a)

N-Gram: p(example|This is a) = 
𝐶(𝑇ℎ𝑖𝑠 𝑖𝑠 𝑎 𝑒𝑥𝑎𝑚𝑝𝑙𝑒)

𝐶(𝑇ℎ𝑖𝑠 𝑖𝑠 𝑎)

N-gram-Introduction



• Data sparsity

Example:

the data: John read moby dick(白鲸记). Mary read a different book. She read a book by Cher.(15 words+18 phrase)

N-gram-data sparsity
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p(John read a book)=p(John|<s>)p(read|John)p(a | read)p(book|a)p(</s>|book)

=1/3 * 1/1 * 2/3 *  1/2 * 1/2 

=0.06

P(Cher read a book)=p(Cher|<s>)p(read|a)p(a|read)p(book|a)p(</s>|book)

=0/3                   0/1       2/3       1/2             ½

=0

\data\ \2-grams:

ngram 1=  13                                            1/1     John read

ngram 2= 16                                            1/3      read moby

1/1    moby dick

\1-grams:                                                   1/1     Mary read

2/15         a                                                  2/3    read a

2/15         book                                            1/2    a different

1/15        by                                                 1/1    different book

1/15         dick                                             1/1     she read 

1/15        differernt 1/2       a book

1/15       John                                             1/2     book by 

1/15         Mary                                           1/1        by cher

1/15       moby 1/1       cher </s>

3/15      read                                                1/3  <s> John

1/15      cher 1/1   dick </s>

1/15      she                                                  1/3   <s> Mary

3/15       <s>                                                1/2  book </s>

3/15      </s>



• Data sparsity

• Smoothing methods

N-gram-smoothing methods
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\data\ \2-grams:

ngram 1=  13                                            1/1     John read

ngram 2= 16                                            1/3      read moby

1/1    moby dick

\1-grams:                                                   1/1     Mary read

2/15         a            0.1                                 2/3    read a

2/15         book       0.2                                1/2     a different

1/15        by            0.1                                1/1     different book

1/15         dick         0.01                             1/1      she read 

1/15        differernt 0.1                              1/2       a book

1/15       John           0.1                               1/2     book by 

1/15         Mary         0.1                               1/1        by cher

1/15       moby 0.1                              1/1       cher </s>

3/15      read             0.1                               1/3  <s> John

1/15      cher 0.1                               1/1   dick </s>

1/15      she             0.1                                1/3   <s> Mary

3/15       <s>           0.1                               1/2  book </s>

3/15      </s>            0.1

P(Cher read a book)=p(Cher|<s>)p(read|a)p(a|read)p(book|a)p(</s>|book)

=p(Cher)*0.1 p(read)*0.1* p(a|read) *p(book|a)*p(</s>|book)

=0.00002



•    Data sparsity

• Smoothing methods

• Additive smoothing

• Good-Turing estimate

• Jelinek-Mercer smoothing (interpolation)

• Katz smoothing (backoff)

• Witten-Bell smoothing

• Absolute discounting

• Kneser-Ney smoothing

6

N-gram-smoothing methods



NNLM-Introduction
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A Neural Probabilistic Language Model(Bengio et al, NIPS’2000 and JMLR 2003)

• Motivation:

– LM does not take into account contexts farther than 2 words.

– LM does not take into account the “similarity” between words.

• Idea:

– A word 𝑤 is associated with a distributed feature vector (a real-

valued vector inℝ𝑛 𝑛 is much smaller than size of the vocabulary)

– Express joint probability function 𝑓 of words sequence in terms of 

feature vectors

– Learn simultaneously the word feature vector and the parameters of 

𝑓



NNLM-Intoduction

[1]  Y. Bengio, and R. Ducharme. A neural probabilistic language model. In Neural Information Processing Systems, volume 13, pages 932-938. 2001.

• Target:

• Projection:

word2vector: word[0.1,0.2,…..,0.3]𝐶𝑘
=>feature vector for each word  

Neural architecture 

P(w𝑗|wj−n+1,…,wj−2,wj−1)=

𝑓 𝑖, 𝑤𝑡−1, … , 𝑤𝑡−𝑛+1 = 𝑔(𝑖, 𝐶 𝑤𝑡−1 , … , 𝐶(𝑤𝑡−𝑛+1))



NNLM-Introduction

9

• softmax output layer:

𝑃 𝑤𝑡 𝑤𝑡−1, ⋯ , 𝑤𝑡−𝑛+1 =
𝑒𝑦𝑤𝑡

 𝑖 𝑒
𝑦𝑖

• 𝑦𝑖 unnormalized log-probabilities for each output word 𝑖

𝑦 = 𝑏 + 𝑈tanh(𝑑 + 𝐻𝑥)
• 𝑥 is the word features layer activation vector

𝑥 = 𝐶 𝑤𝑡−1 , … , 𝐶 𝑤𝑡−𝑛+1
• The free parameters of the model are:

𝜃 = (𝑏, 𝑑,𝑊,𝑈, 𝐻, 𝐶)
– 𝑏 output biases (|𝑉|)

– 𝑑 the hidden layer biases (ℎ)

– 𝑈 the hidden-to-output weights ( 𝑉 × ℎ)

– 𝐻 the hidden layer weights (ℎ × (𝑛 − 1)𝑚)

– 𝐶 word features ( 𝑉 ×𝑚)



• Steps forward:

ℎ𝑗=  𝑙𝑚𝑗𝑙 𝑐𝑙 + 𝑏𝑗

d𝑗 = tanh(ℎ𝑗)

O𝑖 =  𝑗 𝑣𝑖𝑗𝑑𝑗 + 𝑘𝑖

p𝑖 = 𝑒
𝑂𝑖/ 𝑟=1

𝑁 𝑒𝑂𝑟

NNLM-Forward Phase



• Steps BP                

𝐸 =  𝑖=1
𝑁 𝑡𝑖𝑙𝑛𝑝𝑖 + 𝛽( 𝑗𝑙𝑚𝑗𝑙

2 +  𝑖𝑗 𝑣𝑖𝑗
2 )

where 𝑡𝑖=1 if the next word is i or 𝑡𝑖=0

note:

the first part:        cross-entropy

the second part:  is regularization term to prevent the 

neural network from overfitting the training data 

𝜕E
𝜕𝑂𝑖

=
𝜕E
𝜕𝑝𝑖

𝜕𝑝𝑖

𝜕𝑂𝑖
= (1 − p𝑖)

𝜕E
𝜕𝑘𝑖
=
𝜕E
𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑘𝑖
=
𝜕E
𝜕𝑜𝑖

=> 𝑘𝑖=𝑘𝑖 + ε
𝜕E
𝜕𝑘𝑖

𝜕E
𝜕𝑣𝑖𝑗
=
𝜕E
𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑣𝑖𝑗
=
𝜕E
𝜕𝑜𝑖
𝑑𝑗 => 𝑣𝑖𝑗=𝑣𝑖𝑗+ ε

𝜕E
𝜕𝑣𝑖𝑗

𝜕E
𝜕𝑑𝑗

=
𝜕E
𝜕𝑜

𝜕o
𝜕𝑑𝑗
=  𝑖

𝜕E
𝜕𝑂𝑖
𝑣𝑖𝑗

𝜕E
𝜕ℎ𝑗

= 
𝜕E
𝜕𝑑𝑗

𝜕𝑑𝑗

𝜕ℎ𝑗
=
𝜕E
𝜕𝑑𝑗
(1 − tanh(ℎ𝑗)

2)

𝜕E
𝜕𝑏𝑗
=
𝜕E
𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑏𝑗
=
𝜕E
𝜕ℎ𝑗

=> 𝑏𝑗=𝑏𝑗 + ε
𝜕E
𝜕𝑏𝑗

𝜕E
𝜕𝑚𝑗𝑙
=
𝜕E
𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑚𝑗𝑙
=
𝜕E
𝜕ℎ𝑗
𝑐𝑙 => 𝑚𝑗𝑙=𝑚𝑗𝑙+ ε

𝜕E
𝜕𝑚𝑗𝑙

NNLM-Backward/Update Phase



NNLM--Multi NNLMs

•  𝑃 w𝑗 = i h𝑗 =

𝑝1 w𝑗 = i h𝑗 0 < 𝑖 < 𝑁1

𝑝2 w𝑗 = i h𝑗 𝑁1 < 𝑖 < 𝑁2
⋮

𝑝𝑚 w𝑗 = i h𝑗 𝑁𝑚−1 < 𝑖 < 𝑁𝑚



NNLM--Merge NNLMs

The steps:            

F = (P1 o
𝑇 , P2 o

𝑇 , ⋯ , P𝑚 o
𝑇)𝑇

H = F ×M+ b

O = H × V + o

p𝑖 = 𝑒
𝑂𝑖/ 𝑟=1

𝑁 𝑒𝑂𝑟

where: P𝑚 o
𝑇 is the output of single NNLM



corpus

N1

N2

Nm-1

Nm

trian

Multi Neural network

Train again

Merge Neural network

N1

N2

Nm-1

Nm

H O

application

NNLM--Merge NNLMs



model map 2044notep3 record1900 general online1 online2 speedup average

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47 29.94875

Ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51 30.09875

NNLM(0-10240)

P256-h192 34.11 27.6 18.94 13.85 44.6 39.58 32.13 31.7

P256-h384 33.63 27.57 20.02 13.53 44.3 39.31 32.03 31.08

P256-h576 33.81 27.18 19.27 13.59 44.32 39.3 32.03 31.17

P384-h384 33.55 27.09 19.86 13.46 44.28 39.45 32.06 31.32

P256-h384-

h256 34.21 27.52 18.73 13.69 44.72 39.88 32.34 31.04
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NNLM-results



model map 2044notep3 record1900 general online1 online2 speedup

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47

Ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51

NNLM(0-10240)

P256-h192 34.01 27.11 18.19 12.75 43.4 39.17 31.91 30.9

P256-h384 33.9 27.05 18.35 12.71 43.3 39.2 31.86 31.04

P256-h576 33.86 27 18.62 12.79 43.29 39.17 31.96 30.66

P384-h384 34.14 27.08 18.35 12.68 43.29 39.2 31.85 30.83

P256-h384-

h256 34.14 27.08 18.29 12.83 43.47 39.28 31.86 31.17

16

NNLM-results

Note: weight0.1:new*0.1+0.9old



NNLM(multi)--Results

Note: weight0.1:new*0.1+0.9old

model map 2044 notep3

record19

00 general online1 online2 speedup

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47

ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51

mach1 34.35 27.8 20.45 13.27 44.22 39.78 32.28 32.03

mach2 34.41 27.94 19.91 13.4 44.49 39.76 32.32 31.91

mach3 34.32 27.99 19.86 13.43 44.68 39.76 32.39 31.78

mach4 34.19 28.11 19.05 13.4 44.63 39.75 32.4 31.65

mach5 34.16 28.04 18.94 13.43 44.72 39.73 32.41 31.63

mach6 34.1 28.09 18.94 13.45 44.79 39.76 32.41 31.57

mach7 34.11 28.06 18.83 13.45 44.91 39.74 32.43 31.67

mach8 34.11 28.06 18.83 13.45 44.81 39.79 32.46 31.67

mach9 34.14 28.02 18.94 13.42 44.87 39.8 32.47 31.87

mach10 34.24 28.04 19.05 13.46 44.88 39.81 32.49 31.89

weight0.1 34.16 27.14 18.46 12.77 43.46 39.22 31.91 30.94
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NNLM(merge)-results

model map 2044 notep3 record1900 general online1 online2 speedup

ngram 34.4 27.18 18.78 12.89 43.23 39.49 32.15 31.47

Ngram(replace) 34.93 27.57 18.78 12.92 43.45 39.48 32.15 31.51

Mach10(no merge) 34.24 28.04 19.05 13.46 44.88 39.81 32.49 31.89

Mach10(merge)

h100 35.42 28.4 19.64 14.11 45.53 40.25 32.89 32.9

h200 35.92 28.46 19.75 14.25 45.51 40.42 32.85 32.71



• CSLM Toolkit http://www-lium.univ-lemans.fr/cslm/
Holger Schwenk; CSLM - A modular Open-Source Continuous Space Language Modeling Toolkit, in Interspeech, August 2013.

NNLM--toolkit
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http://www-lium.univ-lemans.fr/cslm/


• Introduction

• C&W

• M&H

• RNNLM

• Huang

Word Representation
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• One-hot Representation

dog => [0 0 0 0 1 0 0 0 0 0 0]

cat =>  [1 0 0 0 0 0 0 0 0 0 0]

• Distributed Representation

dog => [0.792 -0.177 0.98 -0.9 …..]

cat => [0.76 0.12 -0.54 0.9 0.65 ….]

Word2vec--Introduction
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Word2vec--Introduction

• Language Modeling

• Speech Recognition

• Machine Translation

• Part-Of-Speech Tagging

• Chunking

• Named Entity Recognition

• Semantic Role Labeling

• Sentiment Analysis

• Paraphrasing

• Question-Answering

• Word-Sense Disambiguation



• A neural network for learning word vectors    (Collobert et al. JMLR 2011)

Natural Language Processing (almost) from Scratch  Journal of Machine Learning Research 1 (2000) 1-48

It focus on how to use word vectors on Natural Language Processing 

• Main idea
• A word and its context is a positive training sample; a random word in that same context gives a negative training sample:

– [+] positive = Score(Cat chills [on] a mat) ---𝑓 𝑥

– [-]  negative = Score(Cat chills [god] a mat)----- 𝑓(𝑥𝑤)

• What to feed in the NN

– each word is an n-dimensional vector, a look up table:

𝐿 ∈ ℝ𝑛× 𝑉

– Training objective:

𝜃 →  𝑀𝑎𝑥 0, 1 − 𝑆𝑝𝑜𝑠 + 𝑆𝑛𝑒𝑔 = 

𝑥𝜖𝑋

 

𝑤𝜖𝐷

max{0,1 − 𝑓 𝑥 + 𝑓(𝑥𝑤)}

Where X is data set(n-windows),D is the dictionary,w is middle word of n-windows

• 3-layer NN:

𝑠 = 𝑈𝑇𝑓𝜃 𝑊𝑥 + 𝑏 ⇒ 𝑓(𝑤𝑡 , 𝑤𝑡−1, … , 𝑤𝑡−𝑛+1)

Where 𝑓𝜃 ⋅ is a NN function. S is a score for the n-window sentence,  x is vector of (𝑤𝑡 , 𝑤𝑡−1, … , 𝑤𝑡−𝑛+1)

• SENNA: http://ml.nec-labs.com/senna/

Word2vec—c&w
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Positive data set

The negative data set

Window size n = 11

|V| = 1300000

7 weeks

http://ml.nec-labs.com/senna/


Three new graphical models for statistical language modelling   Mnih A, Hinton G.

Word2vec—M&H
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• Log-Bilinear model

ℎ = 

𝑖=1

𝑡−1

𝐻𝑖𝐶(𝑤𝑖)

𝑦𝑗 = 𝐶 𝑤𝑗
𝑇
ℎ

Where 𝐶(𝑤𝑖) is a word-vector of 𝑤𝑖, 𝐻𝑖 is m*m matrix. 

• Hierarchical Log-Bilinear Model

Inner product to represent cos distance

To speed up the calculation



Linguistic Regularities in Continuous Space Word Representations (Mikolov, et al. 2013)

Word2vec—RNNLM
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• Recurrent Neural Network Model

0 1 0 … . 0 𝑣

Context at time t-1

d(t) 0 0 1 … . 0 𝑣

Error= y(t)-d(t)



Linguistic Regularities in Continuous Space Word Representations (Mikolov, et al. 2013)

Word2vec--RNNLM
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• Recurrent Neural Network Model

– The input vector 𝑤(𝑡) represents input word at time 𝑡 encoded using One hit 

coding.

– The output layer 𝑦(𝑡) produces a probability distribution over words.

– The hidden layer 𝑠(𝑡) maintains a representation of the sentence history.

– 𝑤(𝑡) and 𝑦 𝑡 are of same dimension as vocabulary

• Model:
𝑠 𝑡 = 𝑓 𝑈𝑤 𝑡 +𝑊𝑠 𝑡 − 1

𝑦 𝑡 = 𝑔(𝑉𝑠(𝑡))

Where 𝑓 is the sigmod function and 𝑔 is the softmax funciton



Word2vec--RNNLM
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• Training:

– Stochastic Gradient Descent (SGD)

Objective(Error) function:

𝑒𝑟𝑟𝑜𝑟 𝑡 = 𝑑 𝑡 − 𝑦(𝑡)

where d(t) is the desired vector, i.e w(t)

– Go through all the training data iteratively, and update   the weight matrices U, V and W online (after processing

every word)

– Training is performed in several epochs (usually 5-10)

• Where is the word representation?

– 𝑈, with each column 
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Word2vec--RNNLM

Experiments on Broadcast News NIST-RT04



Improving Word Representations via Global Context and Multiple Word Prototypes (Huang, et al. ACL 2013)

Word2vec--Huang

29



Word2vec--Huang
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• Improve Collobert & Weston’s model

– Training objective:

𝜃 →  𝑀𝑎𝑥{0, 1 − 𝑆𝑝𝑜𝑠 + 𝑆𝑛𝑒𝑔}

↓

𝜃 →  𝑀𝑎𝑥{0, 1 − 𝑆𝑝𝑜𝑠,𝑑 + 𝑆𝑛𝑒𝑔,𝑑}

where 𝑑 is the document (weighted sum of words in 𝑑)



• Measuring Linguistic Regularity

– Syntactic/Semetic Test

Word2vec—Interesing finding

These representations are surprisingly good at capturing syntactic

and semantic regularities in language, and that each relationship is 

characterized by a relation-specific vector offset.

Exploiting Similarities among Languages for Machine Translation (Mikolov, et al. 2013 http://arxiv.org/pdf/1309.4168.pdf)

C(king)-C(queen)≈C(man)-C(woman)

C(king)-C(man)+C(woman) ≈ C(queen)

http://arxiv.org/pdf/1309.4168.pdf


Figure 1: Distributed word vector representations of numbers and animals in English (left) and 

Spanish (right). The five vectors in each language were projected down to two dimensions 

using PCA, and then manually rotated to accentuate their similarity. It can be seen that these 

concepts have similar geometric arrangements in both spaces, suggesting that it is possible to 

learn an accurate linear mapping from one space to another. 



• Useful tools

1. google https://code.google.com/p/word2vec/

train word vector   

2. SENNA   http://ml.nec-labs.com/senna/
Part of Speech (POS)

Chunking (CHK)

Name Entity Recognition (NER)

Semantic Role Labeling (SRL)

Syntactic Parsing (PSG)

3. Word Representations for NLP   http://metaoptimize.com/projects/wordreprs/

Neural language model (Collobert + Weston)

HLBL language model

Brown clusters

CRF Chunking with word representations

Perceptron NER with word representations

Random indexing word representations

4 . Huang    http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes

5. RNNLM Toolkit http://www.fit.vutbr.cz/~imikolov/rnnlm/

Word2vec--summary
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https://code.google.com/p/word2vec/
http://ml.nec-labs.com/senna/
http://metaoptimize.com/projects/wordreprs/
http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes
http://www.fit.vutbr.cz/~imikolov/rnnlm/
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