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1 Introduction 

• Speaker recognition is a technique to recognize the identity of a speaker from a

speech utterance.
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• My research area focus on the open-set, text-independent speaker verification.



A multitude of researches have been conducted to address the following

three fields:

Pattern matching

Scoring method

Speech
parameterization

fig1 main research fields in speaker recognition



Speech parameterization (feature extractor)

Speech parameterization consists in transforming the speech signal to a set of feature vectors. Most of the speech

parameterizations used in speaker verification systems relies on a cepstral representation of speech.[F. Bimbot, 2004]
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fig2 modular representation of mfcc feature extractor
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• Main approaches in pattern matching for speaker recognition

Probabilistic model

Template matching

Artificial Neural Network

main approach 

Vector quantization [F. Soong, 1985]

Gaussian Mixture Model [A. Reynolds, 2003]

Joint factor analysis [P. Kenny, 2006]

ivector [N. Dehak, 2011 ]

time delay neural work [Y. Bennani , 1991 ]

decision tree [K. R. Farrell, 1991 ]

Nearest neighbor [A. Higgins, 1993]



Performance measure 
• For speaker identification:

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠

• For speaker verification:

𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑢𝑒 𝑠𝑝𝑒𝑎𝑘𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑠𝑝𝑒𝑎𝑘𝑒𝑟

𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟

EER = 𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 = 𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒

Detection error tradeoff (DET) curve is often used to describe the performance.

Cost function (CDET ) is also defined as a weighted sum of FAR and FRR. [NIST, 2008]



2 GMM-UBM framework of speaker verification
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Speaker verification[S. Furui, 1981; D. A. Reynolds, 2003]：to verify a speech utterance

belongs to a specified enrollment, accept or reject.



• GMM-UBM framework [D. A. Reynolds, 2000]

Gaussian Mixture Model is used to modeling the probability density

function of a multi-dimensional feature vector.

Given a speech feature vector X={xi} of dimension F, the probability

density of xi given a C GMM speaker model 𝜆 is given by:

𝑝 𝑥𝑖|𝜆 = 

𝑐=1

𝐶

𝑤𝑐𝑔 𝑥𝑖 , 𝜇𝑐 , Σ𝑐

 

𝑐=1

𝐶

𝑤𝑐 = 1



• The UBM is trained using EM algorithm and a speaker GMM is

estabilished by adjusting the UBM parameters by MAP.

UBMEM

Speaker GMMMAP

training data

enrollment data

fig4 modeling methods for GMM-UBM 



• From distribution:

A speaker utterance is represented by GMM which is adapted

from the UBM via MAP.

M=m+Dz

UBM m represents all acoustic and phonetic variations in

speech data where m is a supervector with dimension CF.

D is diagonal matrix in full space (CF×CF) and z is normally

distributed random vector with dimension CF。

M~N(m, DDT)。



• Over recent years, ivector has demonstrated state-of-the-art performance

for speaker verification.

JFA ivector lda

fig5 ivector methodology for speaker verification
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3 ivector methodology of speaker verification



• Jonit factor analysis [P. Kenny, 2007]

JFA is a model of speaker and session variability in

GMMs.

𝑀 = 𝑚 + 𝑉𝑦 + 𝑈𝑥 + 𝐷𝑧

where m is a speaker- and session-independent

supervector with CF dimension. (UBM)

M is a speaker- and channel- dependent supervector.

𝑚 = [⋮]𝐶𝐹×1 M= [⋮]𝐶𝐹×1



𝑀 = 𝑚+ 𝑉𝑦 + 𝑈𝑥 + 𝐷𝑧

V and D define a speaker subspace, and U defines a session subspace。

𝑉 =

𝑉1
𝑉2
⋮
𝑉𝑐 𝐶𝐹×𝑅

𝑈 =

𝑈1
𝑈2
⋮
𝑈𝑐 𝐶𝐹×𝐿

𝐷 =
Σ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Σ𝑐 𝐶𝐹×𝐶𝐹

The vector y, z and x are assumed to be a random variable with a

normally distribution 𝑁(0, 𝐼).

z is a normally distributed CF dimension random vector.



• i-vector [N. Dehak, 2011]

make no distinction between speaker effects and

session effects in GMM supervector space.

define a total variability space, contains speaker and

session variabilities simultaneously.

𝑀 = 𝑚 + 𝑇𝑤

𝑀~𝑁(𝑚, 𝑇𝑇𝑇)

𝑤~𝑁(0, 𝐼)



𝑀 = 𝑚 + 𝑇𝑤

𝑇 =

𝑇1
𝑇2
⋮
𝑇𝑐 𝐶𝐹×𝑅

, 𝑚 = [⋮]𝐶𝐹×1 , M= [⋮]𝐶𝐹×1 , 𝑤 = [⋮]𝑅×1

T is a low rank 𝐶𝐹 × 𝑅 subspace that contains the

eigenvectors with the largest eigenvalues of total

variability covariance matrix.

𝑤~𝑁(0, 𝐼)



Training and testing procedure for ivector
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fig6 training and testing procedure for i-vector
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• Object function

𝑀 = 𝑚 + 𝑇𝑤

𝑀~𝑁(𝑚, 𝑇𝑇𝑇)

Suppose 𝑥𝑖~𝑁(𝑀, Σ), 𝑥𝑖 = 𝑚 + 𝑇𝑤 + 𝜀

For Gaussian Mixture Model, 𝑥𝑖,𝑐 = 𝑚𝑐 + 𝑇𝑐𝑤 + 𝜀𝑐

ℒ~𝑝 𝑥𝑖|𝜆

Define object function: ℒ =  𝑐 𝑝 𝑥𝑖,𝑐|𝜆



• i-vector extraction [N. Dehak, 2011]

The Baum Welch statistics needed to estimate a given

speech utterance:

𝑁𝑐 =  𝑡 𝑃(𝑐|𝑥𝑡)

𝐹𝑐
′ =  𝑡 𝑃(𝑐|𝑥𝑡)𝑥𝑡

𝐹𝑐 =  𝑡 𝑃(𝑐|𝑥𝑡)(𝑥𝑡 −𝑚𝑐)



• i-vector extraction [N. Dehak, 2011]

The ivector of a speech segment X is computed as the

mean of the posterior probability P(w|X).

𝑃 𝑤 𝑋 ~𝑁( 𝑤, Ξ)

 𝑤 = Ξ𝑇𝑇Σ−1𝐹

Ξ = (𝐼 +  𝑐 𝑇𝑐
𝑇Σ𝑐
−1𝑁𝑐𝑇𝑐)

−1



• T matrix training [N. Dehak, 2011]

T matrix can be trained by an EM procedure.

E steps computes the posterior probability P(w|X).

M step optimizes T by updating following formula:

𝑇𝑐 = ( 𝑢𝐹𝑐(𝑢) 𝑤
𝑇)( 𝑢𝑁𝑐(𝑢)( 𝑤 𝑤

𝑇 + Ξ)



• T matrix training [N. Dehak, 2011]

𝑇𝑐 = ( 𝑢𝐹𝑐(𝑢) 𝑤
𝑇)( 𝑢𝑁𝑐(𝑢)( 𝑤 𝑤

𝑇 + Ξ)

𝑇𝑐 =

…
…
⋮
… 𝐹×𝑅

𝑇 =

𝑇1
𝑇2
⋮
𝑇𝐶 𝐶𝐹×𝑅



4 Intersession compensation and scoring method for ivector
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fig7 intersession compensation and scoring method for ivector
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• Cosine distance [N. Dehak, 2009]

Using cosine kernel between the target speaker ivector and

test speaker ivector.



• WCCN [A. Hatch, 2006]

to minimize the classification error.

𝑊−1 = 𝐵𝐵𝑇



• LDA [K. Fukunaga, 1990; N. Dehak, 2009]

to seek new orthogonal axes to better discriminate different

classes.

a linear transformation that maximizes the between-class

variation while minimizing the within-class variances.

fisher criterion is used for this purpose.



• LDA [K. Fukunaga, 1990; N. Dehak, 2009]

𝑆𝑏 is between-class covariance matrix, and 𝑆𝑤 is the within-class

covariance matrix. The solution 𝑣 is generalized eigenvectors.



• PLDA [S. J. D. Prince, 2007]

Technically, assuming a factor analysis (FA) model of the i-vectors of the

form:

w = 𝜇 + 𝐹ℎ + 𝐺𝑦 + 𝜀 , in practice G always equals to zero

First computes the maximum likelihood estimate (MLE) of the factor

loading matrix F (the Eigenvoice subspace).

Here, w is the i-vector, 𝜇 is the mean of training i-vectors, and

h~𝒩(𝟎, 𝐈) is a vector of latent factors. The full covariance residual

noise term 𝜀 explains the variability not captured through the latent

variables.



• PLDA [S. J. D. Prince, 2007]

Given a pair of ivectors D={w1,w2}, 𝐻1 means two vectors from the same

speaker and 𝐻0 means two vectors from different speakers.[P. Kenny,

2010]

the verification score is computed for all possible model-test i-vector

trials. The scores are computed as the log-likelihood ratio between the

same (𝐻1) versus different (𝐻0) speaker models hypotheses:

𝑙𝑙𝑟 = ln
𝑝 𝒘1, 𝑤|𝐻1

𝑝 𝒘1|𝐻0 ∙ 𝑝 𝒘2|𝐻0



5 Toolkits and database

30

 Kaldi toolkits [D. Povey, 2011]

 database:

trials: NIST SRE08 female core test, contains 1997 females, 59343

trails.

lda/plda training data: fisher English database, contains 7196

females, 13827 sessions.

UBM training data: fisher English database, 6000 sessions female

speech data.
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 setup:

mfcc features, extracting with 20ms hamming window, every

10ms, 19 mel-frequency cepstral coefficient together with log

energy were used. Delta and delta-delta coefficient were then

calculated to produce 60-dimensional feature vector.

2048 Gaussian Mixtures, gender-dependent.

400-dimensional ivector.

150-dimensional lda/plda.
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 SRE 8 results with kaldi: core test, female

EER(%
)

1 2 3 4 5 6 7 8

cosine 28.77 4.78 28.60 21.32 20.43 11.36 7.35 7.63

LDA 24.10 1.79 24.18 14.56 14.42 10.25 6.46 6.58

PLDA 20.09 2.09 20.43 17.87 13.34 8.37 4.44 4.74
condition :
1 All trials involving only interview speech in training and test
2 All trials involving interview speech from the same microphone type in training
and test
3 All trials involving interview speech from different microphones types in training
and test
4 All trials involving interview training speech and telephone test speech
5 All trials involving telephone training speech and noninterview microphone test
speech
6 All trials involving only telephone speech in training and test
7 All trials involving only English language telephone speech in training and test
8 All trials involving only English language telephone speech spoken



6 Some of my previous work
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 Sequential Model adaptation for Speaker Verification

 Block-wise training for ivectors

 Phone-based alignment for channel robust speaker verification ……

 Mlp classification for ivector ……

 ……
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