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ABSTRACT
This paper contributes a jointly embedding model for predicting
relations between a pair of entities in the scenario of knowledge
population. It differs from most stand-alone approaches which sep-
arately perform on either knowledge bases or free texts. The pro-
posed model simultaneously learns low-dimensional vector repre-
sentations for both triplets in knowledge repositories and the men-
tions of relations in free texts, so that we can leverage the evidences
from both of the two resources to make more accurate predictions.
We use NELL to evaluate the performance of our approach, com-
pared with most of cutting-edge methods. Results of extensive ex-
periments show that our model achieves significant improvement
on relation extraction.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]: Re-
lation systems; I.2.7 [Natural Language Processing]: Text analy-
sis

General Terms
Theory

Keywords
Knowledge population, embedding representations, relation extrac-
tion.

1. INTRODUCTION
Relation extraction [1, 10, 15], which aims at discovering the re-
lationships between a pair of entities, is a significant research di-
rection on discovering more beliefs for knowledge bases. Most
stand-alone approaches, however, either use local graph patterns in
knowledge repositories, or extract features from text mentions, to
individually help predict relations between two entities. The het-
erogeneity brings about a gap between structured repositories and
unstructured free texts, which breaks the dream of sharing the evi-
dences from both knowledge and natural language.

For studies in decades, scientists either compete the performance
of their methods on the public text datasets such as ACE1 [11]
and MUC2 [16], or look for effective approaches [9, 12] on im-
proving the accuracy of link prediction within knowledge bases
such as NELL3 [5] and Freebase4 [2]. Thanks to a grateful re-
search of distantly supervised relation extraction [6, 14] which fa-
cilitates the manual annotation via automatically aligning with the
relation mentions in free texts, NELL can not only extract triplet-
s, i.e. 〈head_entity, relation, tail_entity〉, but also collect the
texts between two entities as the evidence of relation mention. We
take an example from NELL which originally records a belief:
〈concept : city : caroline, concept : citylocatedinstate, concept :
stateorprovince : maryland,County and State of〉, where
“County and State of” is the mention between the head en-
tity concept : city : caroline, and the tail entity concept :
stateorprovince : maryland, to indicate the relation concept :
citylocatedinstate.

Fortunately, the embedding techniques [7, 13] enlighten us to break
through the limitation of heterogeneous resources, and to establish
a connection between a relation and its corresponding mention via
learning a specific vector representation for each of the elements,
including the entities and relations in triplets, and the words in men-
tions. More specifically, we propose a joint relation mention em-
bedding (JRME) model in this paper, which simultaneously learns
low-dimensional vector representations for entities and relations in
knowledge repositories, and in the meanwhile, each word in the re-
lation mentions is also trained a dedicated embedding. This mod-
el helps us take advantage of the benefits from the two resources
to make more accurate predictions. We use two different datasets
extracted from NELL to evaluate the performance of JRME, com-
pared with most of cutting-edge methods. It turns out that our mod-
el achieves significant improvement on relation extraction.

2. RELATED WORK
We group some recent works on relation extraction into two cat-
egories, i.e. text-based approaches and knowledge-based method-
s. Generally speaking, both of the parties seek better evidences
to make more accurate prediction. The text-based community fo-
cuses on linguistic features such as the words combined with POS
tags that indicate the relations, but the other side conducts relation
inference depending on the local connecting patterns between en-

1http://www.itl.nist.gov/iad/mig/tests/ace/
2http://www.itl.nist.gov/iaui/894.02/related projects/muc/
3http://rtw.ml.cmu.edu/rtw/
4http://www.freebase.com/



Figure 1: Given a belief, h : city : caroline, r : citylocatedinstate, t : stateorprovince : maryland and m : County and State of
in NELL, (a) shows the distributed representations of a triplet in the knowledge space, and (b) illustrates word embeddings in the
text space.

tity pairs learnt from the knowledge graph which is established by
beliefs.

2.1 Text-based Approaches
It is believed that the texts between two recognized entities in a sen-
tence indicate their relationships to some extent. To implement a
relation extraction system guided by supervised learning, a key step
is to annotate the training data. Therefore, two branches emerge as
follows,
• Relation extraction with manual annotated corpora: Tradi-

tional approaches compete the performance on the public
text datasets which are annotated by experts, such as ACE
and MUC. They choose different features extracted from the
texts, like kernel features [16] or semantic parser features
[11], and there is a comprehensive survey [15] which shows
more details about this branch.

• Relation extraction with distant supervision: Due to the lim-
ited scale and tedious labor caused by manual annotation,
scientists explore an alternative way to automatically gener-
ate large-scale annotated corpora, named by distant supervi-
sion [14]. Even though this cutting-edge technique solves
the issue of lacking annotated corpora, we still suffer from
the problem of noisy and sparse features [6].

2.2 Knowledge-based Methods
Knowledge bases contains millions of entries which are usually
represented as triplets, i.e. 〈head_entity, relation, tail_entity〉,
which intuitively inspire us to regard the whole repository as a
graph, where entities are nodes and relations are edges. Therefore,
one research community looks forward to predicting unknown rela-
tions which may exist between two entities via learning the linking
patterns, and another promising research group tries to learn struc-
tured embeddings of knowledge bases.
• Relation prediction with graph patterns: Some canonical s-

tudies [9, 12] adopt a data-driven random walk model, which
follows the paths from the head entity to the tail entity on the
local graph structure to generate non-linear feature combina-
tions to represent relations, and then uses logistic regression
to select the significant features that contribute to classifying
other entity pairs which also have the given relation.

• Relation prediction with embedding representations: Bor-
des et al. [3, 4] propose an alternative way that embed-

ding the whole knowledge graph via learning a specific low-
dimensional vector for each entity and relation, so that we
just need simple vector calculation instead to predict rela-
tions.

Our model (JRME) benefits more from the latest and state-of-the
art embedding approaches, TransE [3] and IIKE [8]. Therefore,
we re-implement them as the rival methods, and conduct extensive
comparisons in the subsequent experiments.

3. MODEL
The heterogeneity between free texts and knowledge bases brings
about a challenge that we can hardly take advantage of the features
uniformly, since they locate in different spaces and have varies di-
mensions. Thankfully, the embedding techniques [7, 13] leave an
idea that almost all the elements, including words, entities, rela-
tions, can be learnt and assigned distributed representations, and
the mission remaind for us is to jointly learn embeddings for enti-
ties, relations, and the words in the same feature space.

We arrange the subsequent content as follows: Section 3.1 and 3.2
describe how to model the knowledge and texts individually, and
we finally talk about the proposed jointly embedding model in Sec-
tion 3.3.

3.1 Knowledge Relation Embedding
Inspired by TransE [3], we regard the relation r between a pair of
entities, i.e. h and t, as a transition, due to the hierarchical structure
of knowledge graphs. Therefore, we use Dr(h, r, t) as follows to
denote the plausibility of a triplet (h, r, t) illustrated by Figure 1(a):

Dr(h, r, t) = ||h+ r− t||1, (1)

where the closer h + r is to t, the more likely the triplet (h, r, t)
exists. The bold fonts indicate the vector representations, e.g. the
embedding of the head entity h is h ∈ Rd where d is short for
dimension.

Assume thatR is the set of relations. Given a correct triplet (h, r, t),
we aim at pushing all the possible corrupt triplets with wrong rela-
tions {r′|r′ ∈ R & r′ 6= r} away. Therefore, we adopt a margin-
based ranking loss function with a block α to separate all the neg-
ative triplets in the corrupted base K′ from all the positives in the



correct knowledge base K:

arg min
r,r′

Lr =
∑

(h,r,t)∈K

∑
(h,r′,t)∈K′

[α+Dr(h, r, t)−Dr(h, r
′, t)]+,

(2)
in which [ ]+ is a hinge loss function, i.e. [x]+ = max(0, x).

3.2 Text Mention Embedding
Similar to the Knowledge Relation Embedding (KBE), we can al-
so find an approach to measure the distance between the mention
m and its corresponding relation r in Text Mention Embedding
(TME). To denote the embedding of mention m, we sum all the
embeddings of words included by m as shown by Equation (3).
Thanks to representing all the words and relations in vectors with
the same dimension which is demonstrated by Figure 1(b), we adop-
t inner product function shown by Equation (4) to calculate their
similarity.

m =
∑
w∈m

w, (3)

Dm(r,m) = −rTm. (4)

Before using the margin-based ranking loss function to learn, we
need to construct negative set T ′ for each pair of relation mention
(r,m) which appears in the correct training set T . To generate
the negative pairs (r′,m), we keep the mention m but iteratively
change other relations in the set of relations R. The subsequen-
t Formula (5) helps to discriminate the two opponent sets with a
margin β,

arg min
r,m,r′

Lm =
∑

(r,m)∈T

∑
(r′,m)∈T ′

[β+Dm(r,m)−Dm(r′,m)]+.

(5)

3.3 Joint Relation Mention Embedding
Due to the uniform modeling standard of KBE and TME, we can
jointly embedding the relations and corresponding mentions (JRME)
with Equation (6),

arg min
r,m,r′

L =
∑

(h,r,t,m)∈KT

∑
(h,r′,t,m)∈KT ′

[γ +Dr(h, r, t)

−Dr(h, r
′, t) +Dm(r,m)−Dm(r′,m)]+,

(6)

in which each belief (h, r, t,m) belonging to KT contains two
entities, the relation and its corresponding mention.

If we achieve the learnt embeddings for all the entities, relations
and words in mentions, we can simply use Equation (7) to measure
the rationality of a relation r appearing between a pair of entities
h, t with the evidence of m:

Score(h, r, t,m) = Dr(h, r, t) +Dm(r,m) (7)

4. EXPERIMENTS
We set up three objects to the experiments for evaluating the effec-
tiveness of JRME, which are:
• testing the effectiveness of JRME in terms of different eval-

uation protocols/metrics;

• comparing the performances of JRME with other cutting-
edge approaches;

• judging the robustness of the proposed model by using a larg-
er but noisy dataset.

Therefore, Section 4.1 and 4.2 display the different datasets and
the varies protocols we use to measure the performances compared
with several state-of-the-art approaches, i.e TransE [3] and IIKE
[8]. Section 4.3 will show the results of the extensive experiments.

4.1 Datasets
We prepare two datasets with different statistical characteristics. As
illustrated by Table 1, both of them are generated by NELL [5], a
Never-Ending Language Learner which aims to automatically ex-
tract beliefs from the Web. NELL-50K is a medium size dataset,
and each of the belief, which contains the head entity h, the tail
entity t, the relation r between them, and the mention m indicate
the relation, is validated by experts. However, NELL-5M is a much
larger one with five million uncertain training examples automati-
cally learnt from the Web by NELL.

DATASET NELL-50K NELL-5M
#(ENTITIES) 29,904 177,635

#(RELATIONS) 233 236
#(TRAINING EX.) 57,356 5,000,000

#(VALIDATING EX.) 10,710 47,335
#(TESTING EX.) 10,711 47,335

Table 1: Statistics of the datasets used for relation prediction
task.

4.2 Protocols
The scenario for experiments is that given a pair of entities, a short
text/mention to indicate the correct relations and a set of candi-
date relations, we compare the performances among our models
and other state-of-the-art approaches, with the metrics as follows,
• Average Rank: Each candidate relation will gain a score cal-

culated by Equation (7). We sort them in ascent order and
compare with the corresponding ground-truth belief. For
each belief in the testing set, we get the rank of the correct re-
lation. The average rank is an aggregative indicator to some
extent, to judge the overall performance on relation extrac-
tion of an approach.

• Hit@10: Besides the average rank, scientists from the indus-
trials concern more about the accuracy of extraction when
selecting Top10 relations. This metric shows the proportion
of beliefs that we predict the correct relation ranked in Top10.

• Hit@1: It is a more strict metric that can be referred by au-
tomatic system, since it demonstrates the accuracy when just
picking the first predicted relation in the sorted list.

4.3 Hyperparameters
Before displaying the evaluation results, we need to elaborate the
hyperparameters that have been tried, and show the best combina-
tion of hyperparameters we choose. Another advantage of embedding-
based model is that it is unnecessary to tune many hyperparameters.
For our model, we just need to set four, which are the uniform di-
mension d of entities, relations and the words in mentions, the mar-
gin α of KBE, the margin β of TME and the margin γ of JRME.
To decide the ideal set of hyperparameters, we use the validation
set to pick the best combination from d ∈ {10, 20, 50, 100, 200},
α ∈ {0.1, 1.0, 2.0, 5.0, 10.0}, β ∈ {0.1, 1.0, 2.0, 5.0, 10.0} and
γ ∈ {0.1, 1.0, 2.0, 5.0, 10.0}. Finally, we choose d = 100, α =
1.0, β = 1.0 and γ = 2.0 to train the embeddings, as this com-
bination of hyperparameters helps perform best on the validation
set.



4.4 Performances
Table 2 and 3 illustrate the results of experiments on NELL-50K
and NELL-5M, respectively. Both of them show that JRME per-
forms best among all the approaches we implemented. We can also
figure out that text mentions contribute a lot on predicting the cor-
rect relations. Moreover, Table 3 also demonstrates that not only
IIKE is robust to the noise in NELL-5M dataset, which consists
with its characteristics emphasized by Fan et al. [8], but also TME
and JRME share this special “gene”.

APPROACH AVG. R. HIT@10 HIT@1
TransE [3] 54.6 6.5% 1.5%

KRE 25.8 16.8% 5.8%
IIKE [8] 6.3 34.8% 24.3%

TME 3.3 45.9% 32.4%
JRME 2.1 47.5% 36.8%

Table 2: Performance of TransE, KRE, IIKE, TME and JRME
on the metrics of Average Rank, Hit@10 and Hit@1 in NELL-
50K dataset.

APPROACH AVG. R. HIT@10 HIT@1
TransE [3] 50.8 0.52% 0.18%

KRE 45.8 5.7% 0.6%
IIKE [8] 4.5 41.3% 26.6%

TME 1.8 48.4% 32.4%
JRME 1.5 48.6% 35.8%

Table 3: Performance of TransE, KRE, IIKE, TME and JRME
on the metrics of Average Rank, Hit@10 and Hit@1 in NELL-
5M dataset.

5. CONCLUSION
We engage in bridging over the gap between unstructured free texts
and structured knowledge bases to predict more accurate relations
via proposing a jointly embedding model between any given entity
pair for knowledge population. The results of extensive experi-
ments with varies evaluation protocols on both medium and large
NELL datasets effectively demonstrate that our model (JRME) out-
perform other state-of-the-art approaches. Because of the uniform
low-dimensional vector representations for entities, relations and
even the words, evidences for prediction are compressed into em-
beddings to facilitate the information exchange and computing, which
finally leads a huge leap forward in relation extraction.

There still remains, however, several open questions on this promis-
ing research direction in the future, such as exploring better ways
to embed the whole beliefs or mentions without losing too much
regularities of knowledge and linguistics.
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