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Recent studies of knowledge representation attempt to project
both entities and relations, which originally compose a high-
dimensional and sparse knowledge graph, into a continuous low-
dimensional space. One canonical approach TransE (Bordes
et al., 2013) which represents entities and relations with vectors
(embeddings), achieves leading performances solely with triplets,
i.e. (head entity, relation, tail entity), in a knowledge base. The
cutting-edge method DKRL (Xie et al., 2016) extends TransE vi-
a enhancing the embeddings with entity descriptions by means
of deep neural network models. However, DKRL requires extra s-
pace to store parameters of inner layers, and relies on more hyper-
parameters to be tuned. Therefore, we create a single-layer mod-
el which requests much fewer parameters. The model measures
the probability of each triplet along with corresponding entity de-
scriptions, and learns contextual embeddings of entities, relation-
s and words in descriptions simultaneously, via maximizing the
loglikelihood of the observed knowledge. We evaluate our model
in the tasks of knowledge graph completion and entity type clas-
sification with two benchmark datasets: FB500K and EN15K,
respectively. Experimental results demonstrate that the proposed
model outperforms both TransE and DKRL, indicating that it is
both efficient and effective in learning better distributed represen-
tations for knowledge bases.
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ABSTRACT

Recent studies of knowledge representation attempt to project both entities and relations, which orig-
inally compose a high-dimensional and sparse knowledge graph, into a continuous low-dimensional
space. One canonical approach TransE (Bordes et al., 2013) which represents entities and relations
with vectors (embeddings), achieves leading performances solely with triplets, i.e. (head entity, re-
lation, tail entity), in a knowledge base. The cutting-edge method DKRL (Xie et al., 2016) extends
TransE via enhancing the embeddings with entity descriptions by means of deep neural network mod-
els. However, DKRL requires extra space to store parameters of inner layers, and relies on more
hyperparameters to be tuned. Therefore, we create a single-layer model which requests much few-
er parameters. The model measures the probability of each triplet along with corresponding entity
descriptions, and learns contextual embeddings of entities, relations and words in descriptions simul-
taneously, via maximizing the loglikelihood of the observed knowledge. We evaluate our model in
the tasks of knowledge graph completion and entity type classification with two benchmark datasets:
FB500K and EN15K, respectively. Experimental results demonstrate that the proposed model out-
performs both TransE and DKRL, indicating that it is both efficient and effective in learning better
distributed representations for knowledge bases.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A typical large-scale knowledge base, such as Freebase
(Bollacker et al., 2008), mainly contains billions of triplets
(head entity, relation, tail entity), abbreviated as (h, r, t), and
each represents a fact that there is a relation r between the t-
wo entities (h and t). These triplets conventionally compose a
knowledge graph in which each entity is a node, and relations
between two entities are regarded as directed edges. This sym-
bolic representation facilitates storing and displaying knowl-
edge, but makes the inference of knowledge infeasible, espe-
cially when the volume of knowledge base grows and data be-
comes sparse.

Therefore, recent research on knowledge representations at-
tempts to address the issue via projecting both entities and re-
lations into a continuous low-dimensional space (Garcı́a-Durán
et al., 2016; Nickel et al., 2016). One canonical approach is

∗∗Corresponding author: Tel.: +86-135-817-00448;
e-mail: fanmiao.cslt.thu@gmail.com (Miao Fan)

TransE (Bordes et al., 2013), which solely uses triplets in a
knowledge base without requiring extra text to make the in-
ference of knowledge computable. It learns low-dimensional
vector representations (embeddings) of both entities and rela-
tions by minimizing a margin-based loss function. TransE at-
tracts many successive studies (Fan et al., 2014, 2015c,d; Lin
et al., 2015; Wang et al., 2014b), not only because of its leading
performances, but also owing to fewer parameters required.

However, knowledge is expected to reinforce other intelli-
gent applications, such as question-answering (QA) systems
(Shekarpour et al., 2016) in which unstructured text is also in-
volved. On the other hand, mainstream knowledge repositories,
such as Freebase (Bollacker et al., 2008) and NELL (Carlson
et al., 2010), contain concise entity descriptions and relation
mentions in addition. The extra text provides contextual evi-
dence to help learn better embeddings. Therefore, the study of
context-enhanced representation learning for knowledge bases
becomes prosperous (Fan et al., 2015a,b; Wang et al., 2014a;
Weston et al., 2013). The cutting-edge method DKRL (Xie
et al., 2016) extends TransE via enhancing the embeddings with
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entity descriptions by means of deep neural network models.
However, DKRL demands extra space to store parameters of
inner layers, and relies on more hyperparameters to be tuned.

In this paper, we create a single-layer model which requires
much fewer parameters for representation learning of knowl-
edge bases (RLKB). RLKB measures the probability of each
triplet along with corresponding entity descriptions. During the
phase of training, the model learns contextual embeddings of
entities, relations and words in descriptions simultaneously vi-
a maximizing the loglikelihood of the whole observed knowl-
edge base, so as to encoding those embeddings into the same
low-dimensional vector space. We evaluate our model with two
benchmark datasets: FB500K and EN15K. FB500K contains
nearly 500,000 triplets from Freebase, and it is a wide-spread
dataset adopted by many recent studies (Bordes et al., 2013; Fan
et al., 2014, 2015c,d; Lin et al., 2015; Wang et al., 2014b) to
test the performance of knowledge graph completion. EN15K
is composed by almost 15,000 entities occurring in FB500K
for the task of entity type classification (Xie et al., 2016), and
each entity usually belongs to multiple principal entity types
in Freebase. Experimental results demonstrate that the embed-
dings acquired by RLKB outperforms both TransE and DKRL in
the tasks of knowledge graph completion and entity type classi-
fication, indicating that the proposed model is both efficient and
effective in learning better knowledge representations. We also
explore the reason why RLKB achieves such leap forwards on
the two experimental tasks, and find out that the acquired em-
beddings can obtain semantic relatedness among entities, rela-
tions, and even words in descriptions. Intuitively, the semantic
relatedness revealed by RLKB within knowledge repositories,
not only helps narrow down the scope of searching missing enti-
ties/relations, but also provides similar representations between
entities that share the same types.

Overall, we contribute a single layer neural network mod-
el which requires fewer parameters to learn knowledge em-
beddings. In order to acquire contextual embeddings, both
structured knowledge graphs and unstructured text are used, so
that the semantic relatedness among entities, relations and even
words is captured. These embeddings learnt by our approach
not only assist the task of knowledge graph completion, but also
produce better features for the task of entity type classification.

2. Related Work

The trend of studying distributed representations for knowl-
edge bases has emerged in recent years. A group of articles
(Bordes et al., 2013; Fan et al., 2014, 2015c,d; Lin et al., 2015;
Wang et al., 2014b) engage in exploring representation models
based on structured knowledge graphs without requiring extra
text, and we will talk about them in Section 2.1. Section 2.2
is going to give a review on context-enhanced approaches, in
which entity descriptions (Wang et al., 2014a; Xie et al., 2016)
and relation mentions (Fan et al., 2015a,b; Weston et al., 2013)
are additionally considered while learning knowledge embed-
dings.

2.1. Structure-based Representation Learning
TransE (Bordes et al., 2013) is a classical approach on learn-

ing vector representations of both entities and relations solely
with knowledge graphs. The approach regards relations be-
tween two entities as translating operations in vector spaces,
and uses the scoring function ||h + r − t|| to measure the plausi-
bility of each triplet (h, r, t). Its strength lies in requiring fewer
parameters to represent triplets. However, TransE cannot cope
well with multi-relations between two entities, since these rela-
tions tend to gain the same embeddings. To address the issue,
Wang et al. propose TransH (Wang et al., 2014b) in which t-
wo entities are projected into different relation-dependent hy-
perplanes, so that each relation can distinguish from the others.
Fan et al. (Fan et al., 2014) simply adapt the learning rates
along with the number of multi-relations, and achieve great im-
provements. Several state-of-the-art models, such as IIKE (Fan
et al., 2015c), LMNNE (Fan et al., 2015d) and TransR (Lin et al.,
2015), are created to learn better embeddings of entities and re-
lations within knowledge graphs, but none of them considers
extra information from text, such as entity descriptions and re-
lation mentions which are included in most knowledge reposi-
tories as well.

2.2. Context-enhanced Representation Learning
Weston et al. (Weston et al., 2013) firstly concern about en-

coding words in relation mentions together with entities and
relations. They match the mentions with corresponding rela-
tions, based on the assumption of distant supervision (Mintz
et al., 2009). In addition, Fan et al. (Fan et al., 2015a,b, 2016)
leverage the relation mentions already aligned by NELL, and
propose several jointly embedding models.

On the other hand, Wang et al. (Wang et al., 2014a) start
to align entities with anchors in Wikipedia to obtain contextu-
al descriptions. This framework has constraints of application
scenario, because linking by entity names severely pollutes the
embeddings of words, and using Wikipedia anchors complete-
ly relies on the special data source. Therefore, Xie et al. (Xie
et al., 2016) propose DKRL which directly uses the concise de-
scriptions of entities in Freebase, and achieves state-of-the-art
performances on the tasks of knowledge graph completion and
entity type classification. However, DKRL adopts deep neural
network models to refine embeddings of entities and descrip-
tions, so that it needs more space to store parameters of inner
layers and more hyperparameters to be tuned. Therefore, we
design a single-layer model which will be described in the sub-
sequent section to address those issues.

3. Model

Given a knowledge repository ∆ which contains enormous
number of items (h, r, t, dh, dt), where each item is composed
by a head entity h with its descriptions dh, a tail entity t with
its descriptions dt, and a relation r between the two entities,
our model aims to maximize the loglikelihood of the observed
∆, expressed by Eq. (1), to obtain the embeddings of entities,
relations and words in entity descriptions:

arg max
h,r,t,dh,dt

∑
(h,r,t,dh,dt)∈∆

log Pr(h, r, t, dh, dt), (1)
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Fig. 1. The framework of RLKB, a single layer model in which the embeddings of entities, relations, and keywords in descriptions are jointly trained.

in which the probability of each item (h, r, t, dh, dt) ∈ ∆ is influ-
enced by two factors:

log Pr(h, r, t, dh, dt) = log Pr(h, r, t) + log Pr(dh, dt |h, r, t). (2)

Pr(h, r, t) represents the probability of the observed triplet
(h, r, t), and Pr(dh, dt |h, r, t) is the conditional probability of ob-
serving entity descriptions given the triplet.

If a triplet (h, r, t) is a positive example, we need to make sure
that any one of the three objects (h, r and t) is plausible given
the other two. In other words, Pr(h, r, t) is the trade-off among
the three conditional probabilities:

log Pr(h, r, t) =
log Pr(h|r, t) + log Pr(r|h, t) + log Pr(t|h, r)

3
.

(3)
To represent Pr(h|r, t), the conditional probability of observing
h given r and t, we firstly adopt the geometric modeling of a
triplet proposed by TransE (Bordes et al., 2013) which is illus-
trated by Fig. 1: The relation (r) between two entities is consid-
ered as a translation in the vector space from the head entity (h)
to the tail entity (t). Furthermore, we define a scoring function
Θ as follow:

Θ(h, r, t) = α −
1
2
||h + r − t||22 (4)

to quantify the plausibility of a triplet, and α is a positive bias
for structured knowledge. The larger Θ scores, the higher pos-
sibility that the evaluated triplet is positive. It is obvious that
many incorrect/negative head entities, denoted by h′, are likely
to replace h and to collapse the triplet. Suppose that the set of
these negative head entities is E′h. We define Pr(h|r, t) as

Pr(h|r, t) =
expΘ(h,r,t)

expΘ(h,r,t) +
∑

h′∈E′h
expΘ(h′,r,t) . (5)

We can also use the identical way to define Pr(r|h, t) and
Pr(t|h, r) as follows,

Pr(r|h, t) =
expΘ(h,r,t)

expΘ(h,r,t) +
∑

r′∈R′ expΘ(h,r′,t) , (6)

and

Pr(t|h, r) =
expΘ(h,r,t)

expΘ(h,r,t) +
∑

t′∈E′t expΘ(h,r,t′) , (7)

in which r′ is a negative relation included by the set of negative
relations R′, and t′ is a negative tail entity belonging to the set
of negative tail entities E′t .

However, it is difficult to calculate the normalizers of
log Pr(h|r, t), log Pr(r|h, t) and log Pr(t|h, r), since the number
of items included in E′h, R′, and E′t usually reach millions. For-
tunately, we can use the negative sampling method instead, pro-
posed by Mikolov et al. (Mikolov et al., 2013; Goldberg and
Levy, 2014), to approximate log Pr(h|r, t):

log Pr(h|r, t) ≈ log Pr(1|h, r, t) +
1
n

n∑
i=1

log Pr(0|h′i , r, t), (8)

in which n represents the number of negative head entities ran-
domly picked up from E′h. Follow the Eq. (8), we also transfor-
m log Pr(r|h, t) and log Pr(t|h, r):

log Pr(r|h, t) ≈ log Pr(1|h, r, t) +
1
n

n∑
i=1

log Pr(0|h, r′i , t), (9)

log Pr(t|h, r) ≈ log Pr(1|h, r, t) +
1
n

n∑
i=1

log Pr(0|h, r, t′i ). (10)

Here Pr(1|h, r, t) indicates the probability of the assertion “the
triplet (h, r, t) is positive” is true:

Pr(1|h, r, t) =
1

1 + exp−Θ(h,r,t) , (11)

and
Pr(0|h′i , r, t) =

1
1 + expΘ(h′i ,r,t)

(12)

indicates the possibility that the triplet (h′i , r, t) is corrupted.
Besides dealing with the triplets (h, r, t), we need to model

Pr(dh, dt |h, r, t) as well. We assume that descriptions (dh or dt)
are composed according to the target entities (h or t):

log Pr(dh, dt |h, r, t) = log Pr(dh|h) + log Pr(dt |t). (13)

Furthermore, we extract m keywords by means of TF-IDF,
which is short for term frequency-inverse document frequency
(Manning et al., 2008), to well represent descriptions. Suppose
that dh = {w1,w2, ...,wm} (e.g., in which w2 denotes the second
extracted keyword), we try to make the embedding of the head
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entity close to the embeddings of its keywords as shown by Fig.
1 as well. We define another function Φ(dh|h) to measure the
distance:

Φ(dh|h) = β −

m∑
j=1

1
2
||h − w j||

2
2, (14)

in which β is another positive bias for unstructured text. Then
we define Pr(dh|h) as:

Pr(dh|h) =
expΦ(dh |h)

expΦ(dh |h) +
∑

d′h∈D′h
expΦ(d′h |h) , (15)

in which D′h is the set of negative descriptions d′h that do not
belong to h. According to the theory of negative sampling
(Mikolov et al., 2013; Goldberg and Levy, 2014), log Pr(dh|h)
is eventually transformed into:

log Pr(dh|h) ≈ log Pr(1|dh, h) +
1
n

n∑
i=1

log Pr(0|d′h,i, h), (16)

where
Pr(1|dh, h) =

1
1 + exp−Φ(dh,h) . (17)

And log Pr(dt |t) can be approximated in the same way:

log Pr(dt |t) ≈ log Pr(1|dt, t) +
1
n

n∑
i=1

log Pr(0|d′t,i, t), (18)

in which
Pr(1|dt, t) =

1
1 + exp−Φ(dt ,t)

. (19)

To sum up, Eq. (20) shows the decomposed formula which
approximates the joint loglikelihood of an item (h, r, t, dh, dt).

log Pr(h, r, t, dh, dt)
≈ log Pr(1|h, r, t) + log Pr(1|dh, h) + log Pr(1|dt, t)

+
1

3n

n∑
i=1

{log Pr(0|h′i , r, t) + log Pr(0|h, r′i , t) + log Pr(0|h, r, t′i )}

+
1
n

n∑
i=1

{log Pr(0|d′h,i, h) + log Pr(0|d′t,i, t)}.

(20)

4. Algorithm

We use Eq. (20) to replace the original objective function
which is shown by Eq. (1), and obtain the subsequent object to
maximize the loglikelihood of all observed items in a knowl-
edge repository ∆:

arg max
h,r,t,dh,dt

∑
(h,r,t,dh,dt)∈∆

{log Pr(1|h, r, t) + log Pr(1|dh, h) + log Pr(1|dt, t)

+
1

3n

∑
(h′,r′,t′,d′h,d

′
t )∈∆

′
(h,r,t,dh ,dt )

[log Pr(0|h′, r, t) + log Pr(0|h, r′, t)

+ log Pr(0|h, r, t′)]

+
1
n

∑
(h′,r′,t′,d′h,d

′
t )∈∆

′
(h,r,t,dh ,dt )

[log Pr(0|d′h, h) + log Pr(0|d′t , t)]},

(21)

in which (h′, r′, t′, d′h, d
′
t ) is a negative item sampled from the

set of n negative samples ∆′(h,r,t,dh,dt)
, given a positive item

(h, r, t, dh, dt).
The new objective function makes it much easier to ob-

tain the partial derivatives of all knowledge embeddings, i.e.
h, r, t,dh and dt. We use Stochastic Gradient Ascent (SGA) al-
gorithm to achieve the object of RLKB, and to update better dis-
tributed representations in the meanwhile. Algorithm 1 displays
the steps of learning the RLKB model written in pseudocode.

Specifically, the embeddings of entities, relations and word-
s are firstly initialized obeying the same uniform distribution
(Step 1-9). Then each positive triplet along with its entity de-
scriptions is selected from the training set, and we randomly
generate n negative triplets with descriptions based on the posi-
tive sample (Step 12-14). To update the embeddings of entities,
relations and words, we further conduct gradient ascent algo-
rithm according to Eq. (21). We do the steps from 11 to 17 in
iterative fashion until we find the embeddings of entities, rela-
tions and words in descriptions that produce the highest proba-
bility over the validation set (Step 17).

5. Experiments

To evaluate the quality of the embeddings acquired by knowl-
edge representation learning, researchers generally compare the
performances of using them to support several application sce-
narios, such as completing the missing entities or relations in a
knowledge graph, and providing better features for predicting
types of entities.

Besides the tasks of knowledge graph completion and entity
type classification which are used to demonstrate the effective-
ness of RLKB, we compare the complexity of all the models
involved.

5.1. Knowledge Graph Completion

Knowledge graph completion is a classical task which aim-
s at completing a triplet (h, r, t) when one of the three items is
missing. TransE (Bordes et al., 2013) mainly focuses on infer-
encing head or tail entities. DKRL (Xie et al., 2016) extends
the scope to relation prediction which attempts to recover the
missing relation(s) between two observed entities.

5.1.1. Dataset
The dataset FB500K inherits most triplets from the bench-

mark dataset FB15K constructed by TransE. However, FB15K
only contains structured triplets extracted from Freebase. To
bring in entity descriptions, DKRL maps each entity in FB15K
to Freebase, and filters a few entities without adequate descrip-
tions. We rename the new dataset FB500K after its volume,
and extract Top 5 keywords for each entity as “descriptions”
by means of TF-IDF method. Table 1 shows the statistics of
the new benchmark dataset FB500K in which each entity has a
five-keyword description.
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Algorithm 1 : The Learning Algorithm of RLKB
Input:

The training knowledge base ∆ = {(h, r, t, dh, dt)}, entity set E, relation set R, vocabulary set V of entity descriptions; dimension
of embeddings k, number of negative samples n, learning rate r, the bias α and β.

1: foreach e ∈ E do
2: e := Uniform(− 6.0

√
k
, 6.0
√

k
)

3: end foreach
4: foreach r ∈ R do
5: r := Uniform(− 6.0

√
k
, 6.0
√

k
)

6: end foreach
7: foreach w ∈ V do
8: w := Uniform(−−6.0

√
k
, 6.0
√

k
)

9: end foreach
10: while not adequate rounds do
11: foreach (h, r, t, dh, dt) ∈ ∆ do
12: foreach i ∈ range(n) do
13: ∆′(h,r,t,dh,dt)

appends a negative sample: 〈h′i , r
′
i , t
′
i , d
′
h,i, d

′
t,i〉

/*∆′(h,r,t,dh,dt)
is the set of n negative samples, given the positive knowledge (h, r, t, dh, dt).*/

14: end foreach
15: Conduct gradient ascent with learning rate r on log Pr(h, r, t, dh, dt), and update the embeddings based on Eq. (20).
16: end foreach
17: Check the probability over the validation set.
18: Set ∆′(h,r,t,dh,dt)

empty.
19: end while
Output:

All the embeddings of h, t, r, w, where h, t ∈ E, r ∈ R and w ∈ {dh, dt}.

Table 1. Statistics of the benchmark dataset: FB500K for knowledge graph completion.

#Train #Valid #Test #Entity #Relation #Vocabulary

472,860 48,991 57,803 14,904 1,341 27,144

Table 2. Experimental results of entity inference on FB500K.

APPROACH MEAN RANK MEAN HIT@10(%)
Raw Filter Raw Filter

TransE (Bordes et al., 2013) 232 141 35.6 43.0
DKRL(CBOW) (Xie et al., 2016) 236 151 38.3 51.8
DKRL(CNN) (Xie et al., 2016) 200 113 44.3 57.6

RLKB 160 52 49.7 64.6

Table 3. Experimental results of relation prediction on FB500K.

APPROACH MEAN RANK MEAN HIT@1(%)
Raw Filter Raw Filter

TransE (Bordes et al., 2013) 3.52 3.25 60.6 71.6
DKRL(CBOW) (Xie et al., 2016) 2.85 2.51 65.3 82.7
DKRL(CNN) (Xie et al., 2016) 2.91 2.55 69.8 89.0

RLKB 2.78 2.44 65.9 83.3
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5.1.2. Evaluation protocols
Following the protocols proposed by TransE and DKRL to

measure the performances of entity inference and relation pre-
diction, we take turns to replace the head entity, the relation
and the tail entity of each testing triplet, with all the other enti-
ties and relations that appear in the training set. Then, we obtain
three bunches of candidate triplets for each testing triplet. With-
in each bunch, we compute the scores of candidate triplets us-
ing the function ||h + r − t|| to measure its plausibility as knowl-
edge, and then sort them in ascending order. Finally, we locate
the ground-truth triplet and record its rank. For the task of en-
tity inference, we concern on two metrics, i.e. Mean Rank and
Mean Hit@10 (the proportion of ground truth triplets that rank
in Top 10), to measure the performance. Since there are much
fewer relations in the two datasets, we use Mean Hit@1 instead
of Mean Hit@10 in the task of relation prediction. However, the
results measured by those raw metrics are relatively inaccurate,
as the procedures above tend to generate false negative triplets.
In other words, some of the candidate triplets rank rather high-
er than the ground truth triplet just because they also appear in
the training set. We thus filter out those triplets to report more
reasonable results as well.

5.1.3. Hyperparameter settings
Several hyperparameters need to be tuned by the validation

set. They are: the dimension k of embeddings; the learning
rate r of Stochastic Gradient Ascend (SGA) algorithm; num-
ber of negative samples n; the bias α in Eq. (4) and β in E-
q. (14). We select our model with k ∈ {50, 100, 150, 200},
r ∈ {0.01, 0.025, 0.5, 1.0} n ∈ {5, 10, 15}, α ∈ {6.0, 8.0, 10.0}
and β ∈ {6.0, 8.0, 10.0}, and finally find that k = 150, r = 0.025,
n = 15 and α = β = 8.0 is the combination making the model
perform the best on the validation set.

5.1.4. Results
We copy the best experimental results of state-of-the-art

method DKRL (Xie et al., 2016), in which the authors conduct
experiments with two deep neural networks, i.e. CBOW and C-
NN, on the FB500K dataset. For the baseline approach TransE,
we run the original code1 posted by Bordes et al. (Bordes et al.,
2013) and set the best hyperparameters reported by them. Ta-
ble 2 shows the results of entity inference task performed by
the baseline, state-of-the-art approaches and the proposed R-
LKB. We observe that RLKB achieves a great leap forward on
the metrics of Mean Rank and Mean Hit@10. Specifically,
our model relatively improves 54.0% on Filter Mean Rank and
12.2% Top-10 ground-truth triplets completed by entities. The
improvements indicate that RLKB can learn better embeddings
of entities which are closer to their desired positions in the vec-
tor space.

We also use the same embeddings acquired from TransE, D-
KRL, and RLKB with the best hyperparameter settings to con-
duct relation prediction task. Table 3 demonstrates that RLKB
outperforms the other approaches on the metric of Mean Rank,

1https://github.com/glorotxa/SME

Table 4. Statistics of the benchmark dataset: EN15K for entity type classi-
fication.

#Train #Test #Entity Type

12,113 1,332 50

but shows comparable results with DKRL(CBOW) on the metric
of Hit@1. Overall, our model relatively improves 4.3% on Fil-
ter Mean Rank, but decreases 6.4% Top-10 ground-truth triplets
completed by relations.

5.2. Entity Type Classification
Entity Type Classification is a recently proposed task for e-

valuating the quality of knowledge embeddings. It is originally
designed by (Neelakantan and Chang, 2015) and further adopt-
ed by DKRL (Xie et al., 2016). This task uses the learnt dis-
tributed representations as features to train a multi-label classi-
fier, since most entities belong to multiple types.

5.2.1. Dataset
We use the same dataset built by DKRL (Xie et al., 2016)

and rename it EN15K after its volume. EN15K is constructed
upon the entities that appear in FB500K. Firstly, all entity type-
s within FB500K are extracted from Freebase, and we collect
4,054 types in total. Then we pick up the Top 50 types by their
frequency, and remove the common/topic which every entity
has. Finally, we gain 13,445 entities covered by the most fre-
quent 50 types. As Table 4 shows, Xie et al. (Xie et al., 2016)
split these entities into the training set and the test set, which
has 12,113 entities and 1,332 entities, respectively.

5.2.2. Evaluation protocols
Both (Neelakantan and Chang, 2015) and (Xie et al., 2016)

use Mean Average Precision (MAP)2 (Manning et al., 2008) as
the standard metric to evaluate the performance of entity type
classification. It is a common evaluation protocol adopted by
multi-label classification problems.

5.2.3. Hyperparameter settings
We keep the hyperparameter settings of knowledge graph

completion task, and directly take advantages of the best em-
beddings acquired by RLKB. The embeddings of entities are
fed as features into an one-versus-rest Logistic Regression clas-
sifier implemented by Scikit-learn (Pedregosa et al., 2011). To
gain the best performance, we further use five-fold cross valida-
tion with the training set to tune the hyperparameters, including
the inverse of regularization strength C ∈ {0.1, 1.0, 10.0}, and
the norm used in the penalization penalty ∈ {‘l1′, ‘l2′}. Finally,
we achieve the best combination of hyperparameters for RLKB:
C = 0.1 and penalty = ‘l2′.

5.2.4. Results
Table 5 shows the results of entity type classification evaluat-

ed by the metric of MAP with the EN15K dataset. We take turn-

2http://web.stanford.edu/class/cs276/handouts/

EvaluationNew-handout-6-per.pdf
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Table 5. Experimental results of entity type classification on EN15K.

APPROACH MAP

BOW 0.863
TransE (Bordes et al., 2013) 0.882

DKRL(CBOW) (Xie et al., 2016) 0.893
DKRL(CNN) (Xie et al., 2016) 0.901

RLKB 0.922

s to feed BOW (Bag-of-words) features and embeddings learnt
by TransE, DKRL and RLKB into the one-versus-rest Logistic
Regression classifier, and observe that RLKB outperforms the
state-of-the-art approach DKRL. Our model increases 2.1% on
the metric of Mean Average Precision, indicating that the em-
beddings of entities generated by RLKB tend to close to each
other, if they share the same types.

5.3. Model Complexity Comparison
The experimental results in Section 5.1 and Section 5.2

demonstrate that RLKB is more effective than the state-of-the-
art DKRL and the baseline approach TransE, when conducting
tasks of knowledge graph completion and entity type classi-
fication. In this part, we want to further analyze the cost of
achieving the leading performances, via comparing the model
complexities among the approaches we have mentioned.

Table 6. Comparison of model complexity among TransE, DKRL(CBOW),
DKRL(CNN), and RLKB.

APPROACH #Parameters

TransE (Bordes et al., 2013) O(nek + nrk)
DKRL(CBOW) (Xie et al., 2016) O(nek + nrk + nwk)
DKRL(CNN) (Xie et al., 2016) O(nek + nrk + nwk + lk2)

RLKB O(nek + nrk + nwk)

Table 6 shows that TransE needs the least space to store pa-
rameters, as it only focuses on encoding the entities and rela-
tions in a knowledge graph. Therefore, the model complexi-
ty of TransE is solely influenced by the number of entities ne,
the number of relations nr, and the identical dimension k of
vector representations. As DKRL(CBOW) and RLKB consider
the words in entity descriptions in addition, their model com-
plexities increase along with the number of words nw in enti-
ty descriptions. Though they require almost the same number
of parameters, but RLKB can achieve much better knowledge
embeddings than DKRL(CBOW) according to the experimental
results above.

Because DKRL(CNN) adopts an l-layer convolutional neural
network to learn the embeddings of entity descriptions, it has
to maintain extra space for the parameters of inner layers apart
from the essential memories to store the embeddings of entities,
relations, and words.

6. Discussions

Besides observing the quantitative results performed by the t-
wo tasks, i.e. knowledge graph completion and entity type clas-

sification, we look forward to exploring the essence of learning
distributed representations of knowledge bases. Our model as-
sumes itself capable of encoding not only structured knowledge
graph information, but also unstructured text descriptions, into
continuous vector spaces, so that we can bridge the gap of one-
hot representations, and expect to discover certain relevance a-
mong entities, relations and even keywords in descriptions.

An intuitive way of revealing the relevance is to measure the
L2-norm distance between embeddings. For example, if we
search the Top 10 nearest entities to /m/01n4w (Washington
and Lee University) which is a private liberal arts university in
Lexington, Virginia, United States, we can gain a ranked list of
universities shown by Table 7, instead of any other entity types.
We can also find out that these nearest entities, to some extent,
capture semantic similarities with /m/01n4w from different as-
pects: For instance, they either share the same words in names,
or locate at the same places.

This phenomenon also exists among relations, and words in
descriptions, as proved by Table 8 and Table 9, respectively.
The discovery helps to explain the reason why our model can
lead a huge leap forward compared with baseline and state-of-
the-art approaches, when it conducts the tasks of knowledge
graph completion and entity type classification. To sum up, 1)
we can encode entities, relations and words in the same low-
dimensional vector space with the help of the proposed model
RLKB, and obtain semantic relatedness among the embeddings;
The semantic relatedness 2) not only helps narrow down the s-
cope of searching missing entities/relations, but also 3) provides
similar representations between entities with the same types.

7. Conclusion and Future Work

This paper contributes an efficient and effective single-layer
model for learning distributed representations (embeddings) of
entities, relations and even words within entity descriptions.
The proposed model acquires better low-dimensional vector
representations via maximizing the loglikelihood of all triplet-
s and corresponding entity descriptions in a knowledge base.
Experimental results show that the embeddings learnt by our
model help achieve better performances than the state-of-the-
art and baseline approaches, when we use them to conduct tasks
of knowledge graph completion and entity type classification
with two benchmark datasets, respectively. We further explore
the essence of learning distributed representations of knowl-
edge bases, and find out that the embeddings can capture the
semantic relatedness among entities, relations, and even words
in descriptions. This discovery also explains the reason why the
embeddings acquired by our model lead a leap forward in the
tasks of knowledge graph completion and entity type classifica-
tion.

Several open questions that we cannot answer with RLKB are
expected to explore in the future, such as how to discriminate
the embeddings of multi-relations between two entities (Wang
et al., 2014b), or how to model the knowledge described by a
sequence of relations (Garcı́a-Durán et al., 2015).
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Table 7. Top10 nearest entities to /m/01n4w (Washington and Lee University) searched by the L2-norm distance between embeddings.

ENTITY /m/01n4w (Washington and Lee University)

NEAREST@10

/m/0kw4 j ( American University)
/m/017v3q ( College of William & Mary)
/m/01nnsv ( George Washington University)

/m/0pspl ( Georgetown University)
/m/0438 f ( James Madison University)

/m/037s9x ( Washington & Jefferson College)
/m/02zr0z ( Virginia Union University)
/m/0g8r j ( University of Virginia)

/m/07t90 ( University of Washington)
/m/04wlz2 ( Hampton University)

Table 8. Top10 nearest relations to /award/award winner/awards won./award/award honor/award winner searched by the L2-norm distance between em-
beddings.

RELATION /award/award winner/awards won./award/award honor/award winner

NEAREST@10

/music/per f ormance role/track per f ormances./music/track contribution/role
/base/popstra/celebrity/dated./base/popstra/dated/participant

/base/popstra/celebrity/ f riendship./base/popstra/ f riendship/participant
/music/per f ormance role/regular per f ormances./music/group membership/role

/base/popstra/celebrity/canoodled./base/popstra/canoodled/participant
/people/person/spouse s./people/marriage/spouse

/location/location/ad join s./location/ad joining relationship/ad joins
/award/award nominee/awardnominations./award/award nomination/award nominee

/award/award nominated work/award nominations./award/award nomination/nominated f or
/in f luence/in f luence node/in f luenced

Table 9. Top10 nearest keywords to colledges searched by the L2-norm distance between embeddings.

KEYWORD colleges

NEAREST@10

laboratory
universities
university
instituion

nonsectarian
granting

eiga
students
drumlins
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