

Block-wise training for I-vector

Bie Fanhu
CSLT, RIIT, THU
2014-06-23

outline

Outline

- ☐ Introduction
- ☐ Review of I-vector Theory
- ☐ Block-wise Training
- Experiments
- ☐ Conclusions

Introduction

Introduction

- > I-vector
- ➤ Time cost: O(CDM + CM² + M³)

 where C is the number of Gaussian components, D is the dimension of features, M is the dimension of i-vector space.

Review of I-vector Theory

- ➤ I-vector space: a low space which is assumed to contain both the speaker and session
- Loading matrix: a transformation which associate the high dimension space and the I-vector space
- ➤ I-vector: a vector located in I-vector space which was extracted and represented for a speech of a speaker

I-vector algorithm

- \rightarrow M = m + Tw
- > m is the supervector which was concatenating all the mean vector of each component of the UBM.
- > T is the loading matrix
- w is the i-vector which normally distributed in the i-vector space
- \triangleright Decomposed to each component, the formula can be written as: Mc = mc + Tcw

I-vector extraction

- \triangleright Given a speech segment X, i-vector is computed as the mean of the posterior probability p(w|X)
- The zero- and first-order statistics of the speech associated to each component c is defined as follows:

$$N_c = \sum_{t=1} P(c|\mathbf{x}_t)$$

$$\mathbf{F}_c = \sum_{t=1} P(c|\mathbf{x}_t)(\mathbf{x}_t - \mathbf{m}_c)$$

I-vector extraction

Since the prior p(w) is a Gaussian, the posterior of w is a Gaussian as follows:

$$p(\mathbf{w}|\mathbf{X}) \sim \mathcal{N}(\bar{\mathbf{w}}, \mathbf{\Xi})$$

$$\bar{\mathbf{w}} = (\mathbf{I} + \sum_{c} \mathbf{T}_{c}^{T} \mathbf{\Sigma}_{c}^{-1} \mathbf{N}_{c} \mathbf{T}_{c})^{-1} \mathbf{T}^{T} \mathbf{\Sigma}^{-1} \mathbf{F}$$

$$\mathbf{\Xi} = (\mathbf{I} + \sum_{c} \mathbf{T}_{c}^{T} \mathbf{\Sigma}_{c}^{-1} \mathbf{N}_{c} \mathbf{T}_{c})^{-1}$$

where $N_c = N_c I$.

I-vector extraction

- The loading matrix can be trained by an EM procedure
- \triangleright The E step computes posterior probability p(w|X)
- The M step optimizes T by maximizing the following likelihood function:

$$\sum_{u} \sum_{c} \sum_{t} (\mathbf{x}_{t} - \mathbf{T}_{c}\mathbf{w} - \mathbf{m}_{c})^{T} \mathbf{\Sigma}_{c}^{-1} (\mathbf{x}_{t} - \mathbf{T}_{c}\mathbf{w} - \mathbf{m}_{c})$$

> Update T with the following formula:

$$\mathbf{T}_c = (\sum_{u} \mathbf{F}_c(u)\bar{\mathbf{w}})(\sum_{u} \mathbf{N}_c(u)(\bar{\mathbf{w}}\bar{\mathbf{w}}^T + \mathbf{\Xi})).$$

Motivation for Block-wise Training

- The mean of different component is uncorrelated or little correlated
- The different dimension of the mean vector is uncorrelated or little correlated
- The EM procedure for the computation of the i-vector and the loading matrix is largely block-wise

Block-wise Training

Two factors which takes great cost of time:

- ➤ Utterance specific zero-order statistic N_c
- Large dimension of loading matrix T

Reducing dimension of Loading matrix T

- Component block-wise training
- Dimension block-wise training

Component block-wise training

Dimension block-wise training

Assume that each mean is $[M_{c,D1}, M_{c,D2}]$:

```
 \begin{bmatrix} \mathbf{M_{1,D1}} & \mathbf{M_{1,D2}} & \mathbf{M_{1,D1}} & \mathbf{M_{1,D2}} & \cdots & \mathbf{M_{1,D1}} & \mathbf{M_{1,D2}} \end{bmatrix} * = \begin{bmatrix} \mathbf{T_{1,D1}} & \mathbf{0} \\ \mathbf{0} & \mathbf{T_{1,D2}} \\ \mathbf{T_{2,D1}} & \mathbf{0} \\ \mathbf{0} & \mathbf{T_{2,D2}} \\ \cdots & \cdots \\ \mathbf{T_{c,D1}} & \mathbf{0} \\ \mathbf{0} & \mathbf{T_{c,D2}} \end{bmatrix}
```


Loading Matrix Divided

Two factors which takes great cost of time:

- ➤ Utterance specific zero-order statistic N_c
- Large dimension of loading matrix T

Reducing dimension of Loading matrix T

- Component block-wise training
- Dimension block-wise training

Block-wise Training

- > We assume the different blocks are uncorrelated
- The posterior and loading matrix can be estimated with a divide-and-combine way:
 - Divide: Estimate the data according to the groups
 - ❖ Combine: Then the data were combined to form the posterior and loading matrix

Speeding up of Block-wise Training

- Reduce the dimension of the i-vector
- ➤ Reduce the numbers of the component, which reduces the dimension of the loading matrix
- ➤ Because the blocks are uncorrelated, the training process can be parrelel

Experiment Result

Database:

- ➤ UBM, loading matrix: Female data in NIST SRE05, about 160 hours
- > Train and verify: NIST SRE06 core test, 460 speakers, 2127 test segments, totally 29153 trials.

Experiment

Database:

- ➤ UBM, loading matrix: Female data in NIST SRE05, about 160 hours
- > Train and verify: NIST SRE06 core test, 460 speakers, 2127 test segments, totally 29153 trials.

Configuration:

- Features: 20 + 20 + 10 of MFCC including 1 dimension of energy
- ➤ UBM: 1024 Gaussian Components
- ➤ I-vector: 500 or 1000 dimensions

Component-wise Training

	Training time	i-vec dim	EER%	
	(hours)		dir.	comp.
Baseline 1	14.1	500	9.79	=
Baseline2	60.2	1000	14.99	-
GA1	3.53	250	11.13	=
GA2	3.50	250	11.17	=
GA1 + GA2	-	500	10.38	10.68
GB1	7.80	500	10.38	-
GB2	7.80	500	10.07	_
GB1 + GB2	-	1000	9.59	10.03

DimensionComponent-wise Training

	Training time	i-vec dim	EER%	
	(hours)		dir.	comp.
Baseline 1	14.1	500	9.79	-
Baseline2	60.2	1000	14.99	-
GA1	6.0	250	10.53	=
GA2	6.0	250	12.16	=
GA1 + GA2	-	500	10.39	10.23
GB1	13.5	500	9.69	-
GB2	13.5	500	11.57	_
GB1 + GB2	-	1000	10.78	9.29

Conclusions

Conclusions

- We divided the loading matrix into blocks and train the block matrices independent and parallel way
- While the block structure can trade off the training data and model complexity approaches, it will improve the performance a little.

Thanks for your attention!